Show simple item record

dc.contributor.authorAretxabaleta, Xabier M.
dc.contributor.authorGonchenko, Marina
dc.contributor.authorHarshman, Nathan L.
dc.contributor.authorJackson, Steven Glenn
dc.contributor.authorOlshanii, Maxim
dc.contributor.authorAstrakharchik, Grigori
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2020-10-19T11:42:39Z
dc.date.available2020-10-19T11:42:39Z
dc.date.issued2020-04-01
dc.identifier.citationAretxabaleta, X. [et al.]. The dynamics of digits: calculating Pi with Galperin's billiards. "Mathematics (Basel)", 1 Abril 2020, vol. 8, núm. 4, p. 509/1-509/31.
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/2117/330414
dc.description.abstractIn Galperin billiards, two balls colliding with a hard wall form an analog calculator for the digits of the number p . This classical, one-dimensional three-body system (counting the hard wall) calculates the digits of p in a base determined by the ratio of the masses of the two particles. This base can be any integer, but it can also be an irrational number, or even the base can be p itself. This article reviews previous results for Galperin billiards and then pushes these results farther. We provide a complete explicit solution for the balls’ positions and velocities as a function of the collision number and time. We demonstrate that Galperin billiard can be mapped onto a two-particle Calogero-type model. We identify a second dynamical invariant for any mass ratio that provides integrability for the system, and for a sequence of specific mass ratios we identify a third dynamical invariant that establishes superintegrability. Integrability allows us to derive some new exact results for trajectories, and we apply these solutions to analyze the systematic errors that occur in calculating the digits of p with Galperin billiards, including curious cases with irrational number bases.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution-NonCommercial-NoDerivates 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshHamiltonian systems
dc.subject.otherGalperin billiards
dc.subject.otherCalculating pi
dc.subject.otherThree-body problem
dc.subject.otherSolvable model
dc.subject.otherIntegrability
dc.subject.otherSuperintegrability
dc.subject.otherIrrational bases
dc.titleThe dynamics of digits: calculating Pi with Galperin's billiards
dc.typeArticle
dc.subject.lemacPi (Matemàtica)
dc.subject.lemacSistemes hamiltonians
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.contributor.groupUniversitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity
dc.identifier.doi10.3390/math8040509
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/4/509
dc.rights.accessOpen Access
local.identifier.drac28933112
dc.description.versionPostprint (published version)
local.citation.authorAretxabaleta, X.; Gonchenko, M.; Harshman, N.; Jackson, S.; Olshanii, M.; Astrakharchik, G.
local.citation.publicationNameMathematics (Basel)
local.citation.volume8
local.citation.number4
local.citation.startingPage509/1
local.citation.endingPage509/31


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Generic