Analysis of machine learning based condition monitoring schemes applied to complex electromechanical systems
View/Open
09212026(1).pdf (715,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/330308
Document typeConference report
Defense date2020
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In the modern industry framework, the application of condition monitoring schemes over electromechanical systems is being subjected to demanding requirements. Currently, the massive digitalization of industrial assets allows the investigation towards multiple monitoring strategies capable of emphasize deviations over the nominal system operation. However, the most prominent techniques, such as Machine Learning, present great challenges in complex systems. In this regard, the proposed study presents the analysis of the diagnostic capabilities resulting from the classical approaches based on machine learning facing to complex electromechanical systems that implies a working environment subject to different operation condition, configurations with multiple components and the presence of faults of different nature (mechanical, electrical, electromagnetic), under isolated or combined scenarios. Discriminative feature extraction capabilities and classification accuracy will be analyzed as performance measures.
CitationArellano, F. [et al.]. Analysis of machine learning based condition monitoring schemes applied to complex electromechanical systems. A: IEEE International Conference on Emerging Technologies and Factory Automation. "2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA): Proceedings: Vienna, Austria - Hybrid: 08-11 September, 2020". Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 1419-1422. ISBN 978-1-7281-8957-4. DOI 10.1109/ETFA46521.2020.9212026.
ISBN978-1-7281-8957-4
Publisher versionhttps://ieeexplore.ieee.org/abstract/document/9212026
Files | Description | Size | Format | View |
---|---|---|---|---|
09212026(1).pdf | 715,5Kb | Restricted access |