Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.848 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preserving empirical data utility in k-anonymous microaggregation via linear discriminant analysis

Thumbnail
View/Open
Rodriguez - LDA 202006.pdf (1,858Mb)
Share:
 
 
10.1016/j.engappai.2020.103787
 
  View Usage Statistics
Cita com:
hdl:2117/330076

Show full item record
Rodríguez Hoyos, Ana Fernanda
Rebollo Monedero, DavidMés informació
Estrada Jiménez, José Antonio
Forné Muñoz, JorgeMés informacióMés informacióMés informació
Urquiza Aguiar, Luis Felipe
Document typeArticle
Defense date2020-09-01
PublisherElsevier
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Today’s countless benefits of exploiting data come with a hefty price in terms of privacy. -Anonymous microaggregation is a powerful technique devoted to revealing useful demographic information of microgroups of people, whilst protecting the privacy of individuals therein. Evidently, the inherent distortion of data results in the degradation of its utility. This work proposes and analyzes an anonymization method that draws upon the technique of linear discriminant analysis (LDA), with the aim of preserving the empirical utility of data. Further, this utility is measured as the accuracy of a machine learning model trained on the microaggregated data. By transforming the original data records to a different data space, LDA enables -anonymous microaggregation to build microcells more tailored to an intrinsic classification threshold. To do this, first, data is rotated (projected) towards the direction of maximum discrimination and, second, scaled in this direction by a factor that penalizes distortion across the classification threshold. The upshot is that thinner cells are built along the threshold, which ends up preserving data utility in terms of the accuracy of machine learned models for a number of standardized data sets.
Description
© <2020>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationRodríguez-Hoyos, A. [et al.]. Preserving empirical data utility in k-anonymous microaggregation via linear discriminant analysis. "Engineering applications of artificial intelligence", 1 Setembre 2020, vol. 94, p. 103787:1-103787:13. 
URIhttp://hdl.handle.net/2117/330076
DOI10.1016/j.engappai.2020.103787
ISSN0952-1976
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S0952197620301792
Collections
  • SISCOM - Smart Services for Information Systems and Communication Networks - Articles de revista [31]
  • Departament d'Enginyeria Telemàtica - Articles de revista [429]
  • Doctorat en Enginyeria Telemàtica - Articles de revista [87]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Rodriguez - LDA 202006.pdf1,858MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina