dc.contributor.author | Albonda, Haider Daami Resin |
dc.contributor.author | Pérez Romero, Jordi |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions |
dc.date.accessioned | 2020-10-02T14:34:54Z |
dc.date.available | 2020-10-02T14:34:54Z |
dc.date.issued | 2020-03 |
dc.identifier.citation | Albonda, H.; Perez-Romero, J. Analysis of RAN slicing for cellular V2X and mobile broadband services based on reinforcement learning. "EAI Endorsed Transactions on Wireless Spectrum", Març 2020, vol. 4, núm. 13, p. 1-11. |
dc.identifier.issn | 2312-6620 |
dc.identifier.uri | http://hdl.handle.net/2117/329738 |
dc.description.abstract | Radio Access Network (RAN) slicing is one of the key enablers to provide the design flexibility and enable 5G system to support heterogeneous services over a common platform (i.e., by creating a customized slice for each service). In this regard, this paper provides an analysis of a Reinforcement Learning (RL)-based RAN slicing strategy for a heterogeneous network with two generic services of 5G, namely enhanced mobile broadband (eMBB) and vehicle-to-everything (V2X). In particular, this paper investigates the RAN slicing by evaluating the proposed scheme under different algorithm configurations (i.e., number of actions of RL) and parameters in order to analyze the performance in terms of metrics such as RL convergence time and to demonstrate the capability of the algorithm to perform an efficient allocation of resources among slices. In addition, this study compares the results obtained by the proposed solution to those obtained with a Proportional Scheme. |
dc.description.sponsorship | This work was supported in part by the Spanish Research Council and FEDER Funds under SONAR 5G Grant with reference TEC2017-82651-R, and in part by the Baghdad University of Technology |
dc.format.extent | 11 p. |
dc.language.iso | eng |
dc.publisher | European Alliance for Innovation n.o. |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Comunicacions mòbils |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors |
dc.subject.lcsh | Mobile communication systems |
dc.subject.lcsh | Computer networks |
dc.subject.other | Vehicle-to-everything (V2X) |
dc.subject.other | Reinforcement learning |
dc.subject.other | Network slicing |
dc.subject.other | RAN slicing |
dc.title | Analysis of RAN slicing for cellular V2X and mobile broadband services based on reinforcement learning |
dc.type | Article |
dc.subject.lemac | Comunicacions mòbils, Sistemes de |
dc.subject.lemac | Ordinadors, Xarxes d' |
dc.contributor.group | Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils |
dc.identifier.doi | 10.4108/eai.13-7-2018.163841 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://eudl.eu/doi/10.4108/eai.13-7-2018.163841 |
dc.rights.access | Open Access |
local.identifier.drac | 28997515 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-82651-R/ES/SOFTWARIZACION Y OPTIMIZACION AUTOMATICA DE REDES DE ACCESO RADIO 5G MULTI-TENANT/ |
local.citation.author | Albonda, H.; Perez-Romero, J. |
local.citation.publicationName | EAI Endorsed Transactions on Wireless Spectrum |
local.citation.volume | 4 |
local.citation.number | 13 |
local.citation.startingPage | 1 |
local.citation.endingPage | 11 |