A stabilized mixed finite element approximation for incompressible finite strain solid dynamics using a total Lagrangian formulation

View/Open
Cita com:
hdl:2117/329466
Document typeArticle
Defense date2020-08
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
ProjectOPTIMIZACION TOPOLOGICA DE ESTRUCTURAS SUJETAS A INTERACCION FLUIDO-ESTRUCTURA (AEI-RTI2018-098276-B-I00)
OPTIMIZACION TOPOLOGICA DE ESTRUCTURAS SUJETAS A INTERACCION FLUIDO-ESTRUCTURA (AEI-RTI2018-098276-B-I00)
OPTIMIZACION TOPOLOGICA DE ESTRUCTURAS SUJETAS A INTERACCION FLUIDO-ESTRUCTURA (AEI-RTI2018-098276-B-I00)
Abstract
In this work a new methodology for both the nearly and fully incompressible transient finite strain solid mechanics problem is presented. To this end, the momentum equation is complemented with a constitutive law for the pressure which emerges from the deviatoric/volumetric decomposition of the strain energy function for any hyperelastic material model. The incompressible limit is attained automatically depending on the material bulk modulus. The system is stabilized by means of the Variational Multiscale-Orthogonal Subgrid Scale method based on the decomposition of the unknowns into resolvable and subgrid scales in order to prevent pressure fluctuations. Several numerical examples are presented to assess the robustness and applicability of the proposed formulation.
CitationCastañar, I.; Baiges, J.; Codina, R. A stabilized mixed finite element approximation for incompressible finite strain solid dynamics using a total Lagrangian formulation. "Computer methods in applied mechanics and engineering", Agost 2020, vol. 368, p. 113164:1-113164:25.
ISSN0045-7825
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0045782520303492
Files | Description | Size | Format | View |
---|---|---|---|---|
29162223.pdf | 5,255Mb | View/Open |