Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.109 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Telecommunications Engineering (MET)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Telecommunications Engineering (MET)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-supervised video object segmentation using generative adversarial networks

Thumbnail
View/Open
Master Thesis Ponç Palau.pdf (6,834Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/329433

Show full item record
Palau Puigdevall, Poncio
Tutor / directorCamps, Octavia; Giró Nieto, XavierMés informacióMés informació
CovenanteeNortheastern University
Document typeMaster thesis
Date2020-06
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Video Object Segmentation is arguably one of the most challenging tasks in computer vision. Training a model in a supervised manner in this task requires a high number of manually labelled data, which is extremely time-consuming and expensive to generate. In this thesis, we propose a self-supervised method that leverages the spatiotemporal nature of video to perform Video Object Segmentation using Generative Adversarial Networks. In this context, we design a novel framework composed of two generators and two discriminators that aim to reach an equilibrium to fulfill the task. Both at training and testing time, the model needs only the first mask of the video to be trained end to end, which is possible because it exploits the temporal consistency of videos to self-supervise its training. In addition, we refine the masks predicted by the model with the Sum of Squares polynomial, a tool adopted from the convex optimization community. Although our approach is considerably ambitious, our model achieves promising results on the DAVIS2016 dataset, which are reported both in a qualitative and quantitative manner.
SubjectsDigital video, Machine learning, Vídeo digital, Aprenentatge automàtic
DegreeMÀSTER UNIVERSITARI EN ENGINYERIA DE TELECOMUNICACIÓ (Pla 2013)
URIhttp://hdl.handle.net/2117/329433
Collections
  • Màsters oficials - Master's degree in Telecommunications Engineering (MET) [364]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Master Thesis Ponç Palau.pdf6,834MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina