dc.contributor.author | Ramón Cortés, Cristian |
dc.contributor.author | Amela Milian, Ramon |
dc.contributor.author | Ejarque Artigas, Jorge |
dc.contributor.author | Clauss, Philippe |
dc.contributor.author | Badia Sala, Rosa Maria |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Bioinformàtica |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.contributor.other | Barcelona Supercomputing Center |
dc.date.accessioned | 2020-09-17T07:45:23Z |
dc.date.available | 2020-09-17T07:45:23Z |
dc.date.issued | 2020 |
dc.identifier.citation | Ramón-cortés, C. [et al.]. AutoParallel: Automatic parallelisation and distributed execution of affine loop nests in Python. "The international journal of high performance computing applications (IJHPCA)", 2020, vol. 34, núm. 6, p.659-675. |
dc.identifier.issn | 1741-2846 |
dc.identifier.uri | http://hdl.handle.net/2117/328829 |
dc.description.abstract | The last improvements in programming languages and models have focused on simplicity and abstraction; leading Python to the top of the list of the programming languages. However, there is still room for improvement when preventing users from dealing directly with distributed and parallel computing issues. This paper proposes and evaluates AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and contains one single annotation (in the form of a Python decorator) so that anyone with intermediate-level programming skills can scale up an application to hundreds of cores. The evaluation demonstrates that AutoParallel goes one step further in easing the development of distributed applications. On the one hand, the programmability evaluation highlights the benefits of using a single Python decorator instead of manually annotating each task and its parameters or, even worse, having to develop the parallel code explicitly (e.g., using OpenMP, MPI). On the other hand, the performance evaluation demonstrates that AutoParallel is capable of automatically generating task-based workflows from sequential Python code while achieving the same performances than manually taskified versions of established state-of-the-art algorithms (i.e., Cholesky, LU, and QR decompositions). Finally, AutoParallel is also capable of automatically building data blocks to increase the tasks’ granularity; freeing the user from creating the data chunks, and re-designing the algorithm. For advanced users, we believe that this feature can be useful as a baseline to design blocked algorithms. |
dc.description.sponsorship | This work has been supported by the Spanish Government through contracts SEV2015-0493 and TIN2015-65316-P, and by Generalitat de Catalunya through contract 2014-SGR-1051. Cristian Ramon-Cortes predoctoral contract is financed by the Ministry of Economy and Competitiveness under the contract BES-2016-076791. |
dc.format.extent | 17 p. |
dc.language.iso | eng |
dc.publisher | Sage |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Llenguatges de programació |
dc.subject.lcsh | Programming languages (Electronic computers) |
dc.subject.lcsh | Parallel programming (Computer science) |
dc.subject.other | Automatic parallelisation |
dc.subject.other | Distributed computing |
dc.subject.other | Programming models |
dc.title | AutoParallel: Automatic parallelisation and distributed execution of affine loop nests in Python |
dc.type | Article |
dc.subject.lemac | Llenguatges de programació |
dc.subject.lemac | Programació en paral·lel (Informàtica) |
dc.contributor.group | Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions |
dc.identifier.doi | 10.1177/1094342020937050 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://doi.org/10.1177/1094342020937050 |
dc.rights.access | Open Access |
local.identifier.drac | 29009949 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AGAUR/V PRI/2014 SGR 1051 |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO//TIN2015-65316-P/ES/COMPUTACION DE ALTAS PRESTACIONES VII/ |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO//SEV-2015-0493/ES/BARCELONA SUPERCOMPUTING CENTER - CENTRO. NACIONAL DE SUPERCOMPUTACION/ |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO/1PE/BES-2016-076791 |
local.citation.author | Ramón-cortés, C.; Amela, R.; Ejarque, J.; Clauss, P.; Badia, R.M. |
local.citation.publicationName | The international journal of high performance computing applications (IJHPCA) |
local.citation.volume | 34 |
local.citation.number | 6 |
local.citation.startingPage | 659 |
local.citation.endingPage | 675 |