Show simple item record

dc.contributor.authorBazarra, Noelia
dc.contributor.authorFernández, Jose R.
dc.contributor.authorMagaña Nieto, Antonio
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2020-09-02T11:32:04Z
dc.date.available2021-07-18T00:32:12Z
dc.date.issued2020-07-18
dc.identifier.citationBazarra, N. [et al.]. A poro-thermoelastic problem with dissipative heat conduction. "Journal of thermal stresses", 18 Juliol 2020, vol. 43, num. 11, p. 1415-1436.
dc.identifier.issn0149-5739
dc.identifier.urihttp://hdl.handle.net/2117/328295
dc.description.abstractIn this work, we study from the mathematical and numerical points of view a poro-thermoelastic problem. A long-term memory is assumed on the heat equation. Under some assumptions on the constitutive tensors, the resulting linear system is composed of hyperbolic partial differential equations with a dissipative mechanism in the temperature equation. An existence and uniqueness result is proved using the theory of contractive semigroups. Then, a fully discrete approximation is introduced applying the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A discrete stability property is obtained. A priori error estimates are also shown, from which the linear convergence of the approximation is derived under suitable additional regularity conditions. Finally, one- and two-numerical simulations are presented to demonstrate the accuracy of the algorithm and the behavior of the solution.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshThermoelasticity
dc.subject.lcshPorosity
dc.subject.otherA priori error estimates
dc.subject.otherDiscrete stability
dc.subject.otherDissipative mechanism
dc.subject.otherFinite elements
dc.subject.otherPorosity
dc.subject.otherThermoelasticity
dc.titleA poro-thermoelastic problem with dissipative heat conduction
dc.typeArticle
dc.subject.lemacTermoelasticitat
dc.subject.lemacPorositat
dc.contributor.groupUniversitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.1080/01495739.2020.1780176
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids
dc.subject.amsClassificació AMS::35 Partial differential equations::35Q Equations of mathematical physics and other areas of application
dc.relation.publisherversionhttps://www.tandfonline.com/doi/10.1080/01495739.2020.1780176
dc.rights.accessOpen Access
local.identifier.drac28924824
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2016-74934-P
local.citation.authorBazarra, N.; Fernández, J.; Magaña, A.; Quintanilla, R.
local.citation.publicationNameJournal of thermal stresses
local.citation.volume43
local.citation.number11
local.citation.startingPage1415
local.citation.endingPage1436


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder