Application of a viscoplastic damage model for the failure prediction of regeneratively cooled nozzle structures
Cita com:
hdl:2117/328228
Document typeConference report
Defense date2011
PublisherCIMNE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Regeneratively cooled nozzle structures belong to the critical components
of a space shuttle main engine. The cooling channel wall in the combustion chamber is
subjected to extreme cyclic thermomechanical loadings which eventually lead to the damage
of the wall, well known as the ”dog-house” effect. A material model for the purpose
of reliable lifetime prediction is being developed. The model shall describe the material
behaviour under hardening conditions as well as the superimposed effect of fatigue which
occurs due to cyclic loadings.
Motivated by extending the classical rheological model for elastoplasticity with Armstrong-
Frederick kinematic hardening, a viscoplastic model is formulated in the small
strain regime. The coupling with damage is performed using the well-known concept of
effective stress and the principle of strain equivalence. Parameter identification on the
basis of experimental results for the high temperature copper alloy NARloy-Z, which is
one of the typical cooling channel liner materials, is performed. The applicability of the
model will be shown by means of sequentially coupled thermomechanical analyses.
CitationTini, V.; Vladimirov, I.N.; Reese, S. Application of a viscoplastic damage model for the failure prediction of regeneratively cooled nozzle structures. A: COUPLED IV. "COUPLED IV : proceedings of the IV International Conference on Computational Methods for Coupled Problems in Science and Engineering". CIMNE, 2011, p. 1332-1341. ISBN 978-84-89925-78-6.
ISBN978-84-89925-78-6
Files | Description | Size | Format | View |
---|---|---|---|---|
Coupled-2011-120_Application of a viscoplastic.pdf | 804,4Kb | View/Open |