Show simple item record

dc.contributorDini, Paolo
dc.contributor.authorPiovesan, Nicola
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica
dc.date.accessioned2020-08-02T00:04:06Z
dc.date.available2020-08-02T00:04:06Z
dc.date.issued2020-06-05
dc.identifier.citationPiovesan, N. Network resource allocation policies with energy transfer capabilities. Tesi doctoral, UPC, Departament d'Enginyeria Telemàtica, 2020.
dc.identifier.urihttp://hdl.handle.net/2117/328196
dc.description.abstractDuring the last decades, mobile network operators have witnessed an exponential increase in the traffic demand, mainly due to the high request of services from a huge amount of users. The trend is of a further increase in both the traffic demand and the number of connected devices over the next years. The traffic load is expected to have an annual growth rate of 53% for the mobile network alone, and the upcoming industrial era, which will connect different types of devices to the mobile infrastructure including human and machine type communications, will definitely exacerbate such an increasing trend. The current directions anticipate that future mobile networks will be composed of ultra dense deployments of heterogeneous Base Stations (BSs), where BSs using different transmission powers coexist. Accordingly, the traditional Macro BSs layer will be complemented or replaced with multiple overlapping tiers of small BSs (SBSs), which will allow extending the system capacity. However, the massive use of Information and Communication Technology (ICT) and the dense deployment of network elements is going to increase the level of energy consumed by the telecommunication infrastructure and its carbon footprint on the environment. Current estimations indicates that 10% of the worldwide electricity generation is due to the ICT industry and this value is forecasted to reach 51% by 2030, which imply that 23% of the carbon footprint by human activity will be due to ICT. Environmental sustainability is thus a key requirement for designing next generation mobile networks. Recently, the use of Renewable Energy Sources (RESs) for supplying network elements has attracted the attention of the research community, where the interest is driven by the increased efficiency and the reduced costs of energy harvesters and storage devices, specially when installed to supply SBSs. Such a solution has been demonstrated to be environmentally and economically sustainable in both rural and urban areas. However, RESs will entail a higher management complexity. In fact, environmental energy is inherently erratic and intermittent, which may cause a fluctuating energy inflow and produce service outage. A proper control of how the energy is drained and balanced across network elements is therefore necessary for a self-sustainable network design. In this dissertation, we focus on energy harvested through solar panels that is deemed the most appropriate due to the good efficiency of commercial photovoltaic panels as well as the wide availability of the solar source for typical installations. The characteristics of this energy source are analyzed in the first technical part of the dissertation, by considering an approach based on the extraction of features from collected data of solar energy radiation. In the second technical part of the thesis we introduce our proposed scenario. A federation of BSs together with the distributed harvesters and storage devices at the SBS sites form a micro-grid, whose operations are managed by an energy management system in charge of controlling the intermittent and erratic energy budget from the RESs. We consider load control (i.e., enabling sleep mode in the SBSs) as a method to properly manage energy inflow and spending, based on the traffic demand. Moreover, in the third technical part, we introduce the possibility of improving the network energy efficiency by sharing the exceeding energy that may be available at some BS sites within the micro-grid. Finally, a centralized controller based on supervised and reinforcement learning is proposed in the last technical part of the dissertation. The controller is in charge of opportunistically operating the network to achieve efficient utilization of the harvested energy and prevent SBSs blackout.
dc.description.abstractDurante las últimas décadas, los operadores de redes móviles han sido testigos de un aumento exponencial en la demanda de tráfico, principalmente debido a la gran solicitud de servicios de una gran cantidad de usuarios. La tendencia es un aumento adicional tanto en la demanda de tráfico como en la cantidad de dispositivos conectados en los próximos años. Se espera que la carga de tráfico tenga una tasa de crecimiento anual del 53% solo para la red móvil, y la próxima era industrial, que conectará diferentes tipos de dispositivos a la infraestructura móvil, definitivamente exacerbará tal aumento. Las instrucciones actuales anticipan que las redes móviles futuras estarán compuestas por despliegues ultra densos de estaciones base (BS) heterogéneas. En consecuencia, la capa tradicional de Macro BS se complementará o reemplazará con múltiples niveles superpuestos de pequeños BS (SBS), lo que permitirá ampliar la capacidad del sistema. Sin embargo, el uso masivo de la Tecnología de la Información y la Comunicación (TIC) y el despliegue denso de los elementos de la red aumentará el nivel de energía consumida por la infraestructura de telecomunicaciones y su huella de carbono en el medio ambiente. Las estimaciones actuales indican que el 10% de la generación mundial de electricidad se debe a la industria de las TIC y se prevé que este valor alcance el 51% para 2030, lo que implica que el 23% de la huella de carbono por actividad humana se deberá a las TIC. La sostenibilidad ambiental es, por lo tanto, un requisito clave para diseñar redes móviles de próxima generación. Recientemente, el uso de fuentes de energía renovables (RES) para suministrar elementos de red ha atraído la atención de la comunidad investigadora, donde el interés se ve impulsado por el aumento de la eficiencia y la reducción de los costos de los recolectores y dispositivos de almacenamiento de energía, especialmente cuando se instalan para suministrar SBS. Se ha demostrado que dicha solución es ambiental y económicamente sostenible tanto en áreas rurales como urbanas. Sin embargo, las RES conllevarán una mayor complejidad de gestión. De hecho, la energía ambiental es inherentemente errática e intermitente, lo que puede causar una entrada de energía fluctuante y producir una interrupción del servicio. Por lo tanto, es necesario un control adecuado de cómo se drena y equilibra la energía entre los elementos de la red para un diseño de red autosostenible. En esta disertación, nos enfocamos en la energía cosechada a través de paneles solares que se considera la más apropiada debido a la buena eficiencia de los paneles fotovoltaicos comerciales, así como a la amplia disponibilidad de la fuente solar para instalaciones típicas. Las características de esta fuente de energía se analizan en la primera parte técnica de la disertación, al considerar un enfoque basado en la extracción de características de los datos recopilados de radiación de energía solar. En la segunda parte técnica de la tesis presentamos nuestro escenario propuesto. Una federación de BS junto con los cosechadores distribuidos y los dispositivos de almacenamiento forman una microrred, cuyas operaciones son administradas por un sistema de administración de energía a cargo de controlar el presupuesto de energía intermitente y errático de las RES. Consideramos el control de carga como un método para administrar adecuadamente la entrada y el gasto de energía, en función de la demanda de tráfico. Además, en la tercera parte técnica, presentamos la posibilidad de mejorar la eficiencia energética de la red al compartir la energía excedente que puede estar disponible en algunos sitios dentro de la microrred. Finalmente, se propone un controlador centralizado basado en aprendizaje supervisado y de refuerzo en la última parte técnica de la disertación. El controlador está a cargo de operar la red para lograr una utilización eficiente de energía y previene el apagón de SBS
dc.format.extent145 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació
dc.titleNetwork resource allocation policies with energy transfer capabilities
dc.typeDoctoral thesis
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/669313


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder