Show simple item record

dc.contributor.authorGreen, Frederic
dc.contributor.authorTorán Romero, Jacobo
dc.date.accessioned2020-07-31T13:36:49Z
dc.date.available2020-07-31T13:36:49Z
dc.date.issued1991-01
dc.identifier.citationGreen, F.; Toran, J. Kolmogorov complexity of #P functions. 1991.
dc.identifier.urihttp://hdl.handle.net/2117/328177
dc.description.abstractAre the outputs of #P functions "random"? We way phrase this question more precisely: are there #P functions whose outputs cannot in general be compressed into a string of small length, and recovered quickly from that string, also given the input as additional information? We prove that the answer to this question is "yes" if and only if P ¿ PP.
dc.format.extent11 p.
dc.language.isoeng
dc.relation.ispartofseriesLSI-91-2
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.lcshPolynomials
dc.titleKolmogorov complexity of #P functions
dc.typeExternal research report
dc.subject.lemacPolinomis
dc.rights.accessOpen Access
local.identifier.drac1837530
dc.description.versionPostprint (published version)
local.citation.authorGreen, F.; Toran, J.


Files in this item

Thumbnail

This item appears in the following Collection(s)

    Show simple item record

    Attribution-NonCommercial-NoDerivs 3.0 Spain
    Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain