Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
63.979 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Second species periodic solutions for the three body problem

Thumbnail
View/Open
memoria.pdf (939,2Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/328152

Show full item record
Lamas Rodríguez, JoséMés informacióMés informació
Tutor / directorGuàrdia Munarriz, MarcelMés informacióMés informació; Martínez-Seara Alonso, M. TeresaMés informacióMés informacióMés informació
Document typeMaster thesis
Date2020-07
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We are going to explain the construction of second-species periodic solutions for the Restricted Planar Circular 3-Body Problem. These solutions, whose existence had been conjectured by Poincaré, are referred to periodic solutions that travel near singular points. To do that, we will study two different papers, one written by S.V.Bolotin and R.S.Mackay, and the other one written by Jean-Pierre Marco and Laurent Niederman. Although they have much in common, the first one gives a variational approach of the problem (using Lagrangian systems and the Principle of Least Action), while the other one gives a geometrical approach (defining isolated blocks and perturbative methods). We will explain and expand these approaches, to sum up with a briefly comparison between them. For their study, we will take as a reference the particular case of the Restricted 3-Body Problem corresponding to the Sun, Jupiter and an asteroid, whose singular point will be the collision between these last two bodies.
SubjectsDynamics, Dinàmica
DegreeMÀSTER UNIVERSITARI EN MATEMÀTICA AVANÇADA I ENGINYERIA MATEMÀTICA (Pla 2010)
URIhttp://hdl.handle.net/2117/328152
Collections
  • Màsters oficials - Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME) [263]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf939,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina