Show simple item record

dc.contributor.authorReyes, Ricardo
dc.contributor.authorCodina, Ramon
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Civil
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-07-29T14:04:55Z
dc.date.issued2020-08
dc.identifier.citationReyes, R.; Codina, R. Element boundary terms in reduced order models for flow problems: domain decomposition and adaptive coarse mesh hyper-reduction. "Computer methods in applied mechanics and engineering", Agost 2020, vol. 368, p. 113159:1-113159:27.
dc.identifier.issn0045-7825
dc.identifier.otherhttps://www.researchgate.net/publication/337768812_Element_boundary_terms_in_reduced_order_models_for_flow_problems_domain_decomposition_and_adaptive_coarse_mesh_hyper-reduction
dc.identifier.urihttp://hdl.handle.net/2117/327995
dc.description.abstractIn this paper we present a finite-element based reduced order model and, in particular, we consider two aspects related to the introduction of inter-element boundary terms in the formulation. The first is a domain decomposition strategy in which the transmission conditions involve boundary terms to account for non-matching meshes and discontinuous physical properties. The second is a coarse mesh hyper-reduction for which we propose an adaptive refinement driven by an a posteriori error estimator that contains element boundary terms. As the finite element full order model, the reduced order model is based on the Variational Multi-Scale framework, with sub-grid scales defined not only in the element interiors, but also on the inter-element boundaries. We present some examples of application using the incompressible Navier–Stokes equations and the Boussinesq approximation.
dc.description.sponsorshipR. Reyes acknowledges the scholarship received from COLCIENCIAS, from the Colombian Government. R. Codina acknowledges the support received from the ICREA, Spain Acadèmia Research Program, from the Catalan Government.
dc.language.isoeng
dc.rights© 2019. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
dc.subjectÀrees temàtiques de la UPC::Física::Física de fluids::Flux de fluids
dc.subject.lcshDecomposition (Mathematics)
dc.subject.lcshFluid mechanics--Mathematical models
dc.subject.otherReduced order model (ROM)
dc.subject.otherVariational multi-scale (VMS) method
dc.subject.otherBoundary subscales
dc.subject.otherHyper-reduction
dc.subject.otherAdaptive mesh refinement (AMR)
dc.subject.othera posteriori error estimates
dc.titleElement boundary terms in reduced order models for flow problems: domain decomposition and adaptive coarse mesh hyper-reduction
dc.typeArticle
dc.subject.lemacDescomposició (Matemàtica)
dc.subject.lemacMecànica de fluids -- Mètodes numèrics
dc.contributor.groupUniversitat Politècnica de Catalunya. ANiComp - Anàlisi numèrica i computació científica
dc.identifier.doi10.1016/j.cma.2020.113159
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0045782520303443
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac28997114
dc.description.versionPostprint (author's final draft)
dc.date.lift2022-06-05
local.citation.authorReyes, R.; Codina, R.
local.citation.publicationNameComputer methods in applied mechanics and engineering
local.citation.volume368
local.citation.startingPage113159:1
local.citation.endingPage113159:27


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Generic