Show simple item record

dc.contributor.authorCima Mollet, Anna
dc.contributor.authorGasull Embid, Armengol
dc.contributor.authorMañosa Fernández, Víctor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.identifier.citationCima, A.; Gasull, A.; Mañosa, V. A dynamic Parrondo's paradox for continuous seasonal systems. "Nonlinear dynamics", Octubre 2020, vol. 102, num. 2, p. 1033–1043.
dc.description.abstractWe show that planar continuous alternating systems, which can be used to model systems with seasonality, can exhibit a type of Parrondo’s dynamic paradox, in which the stability of an equilibrium, common to all seasons is reversed for the global seasonal system. As a byproduct of our approach we also prove that there are locally invertible orientation preserving planar maps that cannot be the time-1 flow map of any smooth planar vector field
dc.format.extent11 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics
dc.subject.lcshDifferentiable dynamical systems
dc.subject.otherContinuous dynamical systems with seasonality
dc.subject.otherNon-hyperbolic critical points
dc.subject.otherLocal asymptotic stability
dc.subject.otherParrondo's dynamic paradox
dc.titleA dynamic Parrondo's paradox for continuous seasonal systems
dc.subject.lemacSistemes dinàmics diferenciables
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34D Stability theory
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AGAUR/ 2017 SGR 388
local.citation.authorCima, A.; Gasull, A.; Mañosa, V.
local.citation.publicationNameNonlinear dynamics

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder