Show simple item record

dc.contributor.authorTanyildiz, Deniz Cagri
dc.contributor.authorMartí, Julio Marcelo
dc.contributor.authorRossi, Riccardo
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Anàlisi Estructural
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-07-21T15:42:14Z
dc.date.available2020-10-09T00:28:44Z
dc.date.issued2020-01
dc.identifier.citationTanyildiz, D.; Marti, J.; Rossi, R. Solution of Navier–Stokes equations on a fixed mesh using conforming enrichment of velocity and pressure. "Computational particle mechanics", 2020, vol. 7, núm. 1, p. 71-86.
dc.identifier.issn2196-4378
dc.identifier.urihttp://hdl.handle.net/2117/327289
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/s40571-019-00285-6
dc.description.abstractSimulation of fluid flows of multi-materials is an intriguing topic in computational mechanics. Capturing the physics of the interface between different materials poses a challenge because of the discontinuities that may occur on the interface. Several methods have been proposed in the literature to deal with this issue. In this paper, a technique based on Nitsche’s method has been employed on a fixed mesh combined with the PFEM-2 strategy for the solution of Navier–Stokes equations on multi-fluid flows. The novelty of this technique is its capability of capturing the strong and weak discontinuities and its compatibility for the application of various types of boundary conditions on the interface.
dc.description.sponsorshipThe research that has been presented in this publication and the results obtained have been conducted and achieved with the support of the Ministerio de Economía y Competitividad (MINECO) from Spain and its funding program Ayudas para Contratos Predoctorales para la Formación de Doctores (ref. BES-2014-070613). Author Deniz C. Tanyildiz would like to express special thanks to the project: PARFLOW (ref. BIA2013-49007-C2-1-R). Dr. Riccardo Rossi would like to express special thanks to the project: EXAQUTE (ref. 800898). Moreover, the authors would like to express their gratitude to Dr. Joan Baiges from Polytechnical University of Catalonia, for his substantial help on Nitsche’s method.
dc.format.extent16 p.
dc.language.isoeng
dc.publisherSpringer
dc.subjectÀrees temàtiques de la UPC::Física::Física de fluids::Flux de fluids
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshNavier-Stokes equations--Numerical solutions
dc.subject.lcshFluids--Mathematical models
dc.subject.otherLagrangian particles
dc.subject.otherMulti-fluids
dc.subject.otherNitsche's Method
dc.subject.otherFixed mesh
dc.titleSolution of Navier–Stokes equations on a fixed mesh using conforming enrichment of velocity and pressure
dc.typeArticle
dc.subject.lemacFluids -- Models matemàtics
dc.subject.lemacEquacions de Navier-Stokes -- Mètodes numèrics
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.identifier.doi10.1007/s40571-019-00285-6
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40571-019-00285-6
dc.rights.accessOpen Access
local.identifier.drac28722643
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/BIA2013-49007-C2-2-R
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/800898/EU/EXAscale Quantification of Uncertainties for Technology and Science Simulation/ExaQUte
local.citation.authorTanyildiz, D.; Marti, J.; Rossi, R.
local.citation.publicationNameComputational particle mechanics
local.citation.volume7
local.citation.number1
local.citation.startingPage71
local.citation.endingPage86
local.personalitzacitaciotrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder