Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.161 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EOLI - Enginyeria d'Organització i Logística Industrial
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EOLI - Enginyeria d'Organització i Logística Industrial
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A scenario optimisation procedure to plan annualised working hours under demand uncertainty

Thumbnail
View/Open
11. Amaia (març).pdf (368,9Kb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/317

Show full item record
Corominas Subias, AlbertMés informacióMés informacióMés informació
Lusa García, AmaiaMés informacióMés informacióMés informació
Muñoz, Norberto
Document typeResearch report
Defense date2006-03
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 2.5 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 2.5 Spain
Abstract
Annualising working hours (i.e., the possibility of irregularly distributing the total number of working hours over the course of a year) enables to adapt production capacity to fluctuations in demand. The demand, which is an essential data for an optimal planning of work time, usually depends on several and complex factors. Often, tit is not possible to obtain a reliable prediction of the demand or it is no realistic to consider that can be adjusted to a probability distribution. In some cases, it is possible to determine a set of demand scenarios. Each one with a related probability. In this work we present a multistage stochastic optimization model which provides a robust solution (i.e., feasible for any possible scenario) and minimises the expected total capacity shortage
Is part ofIOC-DT-P; 2006-11
URIhttp://hdl.handle.net/2117/317
Collections
  • EOLI - Enginyeria d'Organització i Logística Industrial - Reports de recerca [59]
  • IOC - Institut d'Organització i Control de Sistemes Industrials - Reports de recerca [89]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
11. Amaia (març).pdf368,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina