Show simple item record

dc.contributor.authorGràcia Sabaté, Francesc Xavier
dc.contributor.authorMartín Grillo, Rubén
dc.contributor.authorRomán Roy, Narciso
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.identifier.citationGràcia Sabaté, Xavier; Martín Grillo, Rubén; Román Roy, Narciso. Constraint algorithm for k-presymplectic hamiltonian systems: application to singular field theories. "International Journal of Geometric Methods in Modern Physics", 1 Agost 2009, vol. 6, núm. 5, p. 851-872.
dc.description.abstractThe k-symplectic formulation of field theories is specially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way, one can mimick the presymplectic constraint algorithm to obtain a constraint algorithm that can be applied to k-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations of field theories defined by a singular Lagrangian, as well as to the unified Lagrangian–Hamiltonian formalism (Skinner–Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.
dc.format.extent22 p.
dc.publisherWorld Scientific and Engineering Academy and Society (WSEAS)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshPartial differential equations
dc.subject.lcshDifferential geometry
dc.subject.lcshFiber spaces (Mathematics)
dc.subject.lcshLagrangian functions
dc.subject.lcshField theory (Physics)
dc.subject.otherk-symplectic and k-presymplectic manifolds
dc.subject.otherConstraint algorithm
dc.subject.otherFeld theories
dc.subject.otherLagrangian and Hamiltonian formalisms
dc.titleConstraint algorithm for k-presymplectic hamiltonian systems: application to singular field theories
dc.subject.lemacEquacions diferencials
dc.subject.lemacGeometria diferencial
dc.subject.lemacFeixos fibrats (Matemàtica)
dc.subject.lemacEspais fibrats (Matemàtica)
dc.subject.lemacLagrange, Funcions de
dc.subject.lemacCamps, Teoria dels (Física)
dc.contributor.groupUniversitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
dc.subject.amsClassificació AMS::35 Partial differential equations::35Q Equations of mathematical physics and other areas of application
dc.subject.amsClassificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry
dc.subject.amsClassificació AMS::55 Algebraic topology::55R Fiber spaces and bundles
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70S Classical field theories
dc.rights.accessOpen Access
local.citation.authorGràcia Sabaté, Xavier; Martín Grillo, Rubén; Román Roy, Narciso
local.citation.publicationNameInternational Journal of Geometric Methods in Modern Physics

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain