dc.contributor.author | Cariñena, José F. |
dc.contributor.author | Gràcia Sabaté, Francesc Xavier |
dc.contributor.author | Marmo, Giuseppe |
dc.contributor.author | Martínez, Eduardo |
dc.contributor.author | Muñoz Lecanda, Miguel Carlos |
dc.contributor.author | Román Roy, Narciso |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV |
dc.date.accessioned | 2009-09-18T14:36:35Z |
dc.date.available | 2009-09-18T14:36:35Z |
dc.date.issued | 2009-08-14 |
dc.identifier.uri | http://hdl.handle.net/2117/3052 |
dc.description.abstract | The geometric formulation of Hamilton--Jacobi theory for systems with nonholonomic constraints is developed, following the ideas of the authors in previous papers. The relation between the solutions of the Hamilton--Jacobi problem with the symplectic structure defined from the Lagrangian function and the constraints is studied. The concept of complete solutions and their relationship with constants of motion, are also studied in detail. Local expressions using quasivelocities are provided. As an example, the nonholonomic free particle is considered. |
dc.format.extent | 22 p. |
dc.language.iso | eng |
dc.rights | Attribution-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria |
dc.subject.lcsh | Differential equations |
dc.subject.lcsh | Differentiable dynamical systems |
dc.subject.lcsh | Hamiltonian systems |
dc.subject.lcsh | Dynamics |
dc.subject.lcsh | Mechanics |
dc.subject.lcsh | Lagrangian functions |
dc.subject.other | Hamilton–Jacobi equation |
dc.subject.other | Nonholonomic Lagrangian system |
dc.subject.other | Quasivelocity |
dc.subject.other | Symplectic manifold |
dc.subject.other | Constant of motion |
dc.subject.other | Complete integral |
dc.title | Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems |
dc.type | External research report |
dc.subject.lemac | Equacions diferencials ordinàries |
dc.subject.lemac | Sistemes dinàmics diferenciables |
dc.subject.lemac | Hamilton, Sistemes de |
dc.subject.lemac | Partícules (Física nuclear) |
dc.subject.lemac | Sistemes dinàmics diferenciables |
dc.subject.lemac | Hamilton, Sistemes de |
dc.subject.lemac | Lagrange, Funcions de |
dc.contributor.group | Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions |
dc.subject.ams | Classificació AMS::34 Ordinary differential equations::34A General theory |
dc.subject.ams | Classificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory |
dc.subject.ams | Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems |
dc.subject.ams | Classificació AMS::70 Mechanics of particles and systems::70F Dynamics of a system of particles, including celestial mechanics |
dc.subject.ams | Classificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods |
dc.subject.ams | Classificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics |
dc.relation.publisherversion | http://arXiv.org/abs/0908.2453 |
dc.rights.access | Open Access |
local.personalitzacitacio | true |