Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.760 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals

Thumbnail
View/Open
Article (3,383Mb)
Share:
 
 
10.1088/1741-2560/12/4/046001
 
  View Usage Statistics
Cita com:
hdl:2117/28562

Show full item record
Migliorelli Falcone, Carolina MercedesMés informació
Alonso López, Joan FrancescMés informacióMés informacióMés informació
Romero Lafuente, SergioMés informacióMés informacióMés informació
Mañanas Villanueva, Miguel ÁngelMés informacióMés informacióMés informació
Nowak, Rafal
Russi Tintoré, Antonio
Document typeArticle
Defense date2015-05-27
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Objective. One of the principal drawbacks of magnetoencephalography (MEG) is its high sensitivity to metallic artifacts, which come from implanted intracranial electrodes and dental ferromagnetic prosthesis and produce a high distortion that masks cerebral activity. The aim of this study was to develop an automatic algorithm based on blind source separation (BSS) techniques to remove metallic artifacts from MEG signals. Approach. Three methods were evaluated: AMUSE, a second-order technique; and INFOMAX and FastICA, both based on high-order statistics. Simulated signals consisting of real artifact-free data mixed with real metallic artifacts were generated to objectively evaluate the effectiveness of BSS and the subsequent interference reduction. A completely automatic detection of metallic-related components was proposed, exploiting the known characteristics of the metallic interference: regularity and low frequency content. Main results. The automatic procedure was applied to the simulated datasets and the three methods exhibited different performances. Results indicated that AMUSE preserved and consequently recovered more brain activity than INFOMAX and FastICA. Normalized mean squared error for AMUSE decomposition remained below 2%, allowing an effective removal of artifactual components. Significance. To date, the performance of automatic artifact reduction has not been evaluated in MEG recordings. The proposed methodology is based on an automatic algorithm that provides an effective interference removal. This approach can be applied to any MEG dataset affected by metallic artifacts as a processing step, allowing further analysis of unusable or poor quality data.
CitationMigliorelli, C. [et al.]. Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals. "Journal of neural engineering", 27 Maig 2015, vol. 12, p. 046001-1-046001-12. 
URIhttp://hdl.handle.net/2117/28562
DOI10.1088/1741-2560/12/4/046001
ISSN1741-2560
Publisher versionhttp://iopscience.iop.org/1741-2552/12/4/046001/pdf/1741-2552_12_4_046001.pdf
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.278]
  • BIOART - BIOsignal Analysis for Rehabilitation and Therapy - Articles de revista [65]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1741-2552_12_4_046001.pdfArticle3,383MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina