On the natural stabilization of convection dominated problems using high order Bubnov–Galerkin finite elements
View/Open
CMA_QCx_KSx_ESL_AHC_ERx_2013.pdf (709,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/28463
Document typeArticle
Defense date2014-01
Rights accessRestricted access - publisher's policy
Abstract
In the case of dominating convection, standard Bubnov–Galerkin finite elements are known to deliver oscillating discrete solutions for the convection–diffusion equation. This paper demonstrates that increasing the polynomial degree (p-extension) limits these artificial numerical oscillations. This is contrary to a widespread notion that an increase of the polynomial degree destabilizes the discrete solution. This treatise also provides explicit expressions as to which polynomial degree is sufficiently high to obtain stable solutions for a given Peclet number at the nodes of a mesh.
CitationCai, Q. [et al.]. On the natural stabilization of convection dominated problems using high order Bubnov–Galerkin finite elements. "Computers & mathematics with applications", Gener 2014, vol. 66, núm. 12, p. 2545-2558.
ISSN0898-1221
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0898122113005609
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
CMA_QCx_KSx_ESL_AHC_ERx_2013.pdf![]() | 709,0Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain