Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.663 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • VIS - Visió Artificial i Sistemes Intel·ligents
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • VIS - Visió Artificial i Sistemes Intel·ligents
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Competitive function approximation for reinforcement learning

Thumbnail
View/Open
1599-Competitive-Function-Approximation-for-Reinforcement-Learning.pdf (4,347Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/28454

Show full item record
Agostini, Alejandro Gabriel
Celaya Llover, EnricMés informacióMés informació
Document typeResearch report
Defense date2014
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The application of reinforcement learning to problems with continuous domains requires representing the value function by means of function approximation. We identify two aspects of reinforcement learning that make the function approximation process hard: non-stationarity of the target function and biased sampling. Non-stationarity is the result of the bootstrapping nature of dynamic programming where the value function is estimated using its current approximation. Biased sampling occurs when some regions of the state space are visited too often, causing a reiterated updating with similar values which fade out the occasional updates of infrequently sampled regions. We propose a competitive approach for function approximation where many different local approximators are available at a given input and the one with expectedly best approximation is selected by means of a relevance function. The local nature of the approximators allows their fast adaptation to non-stationary changes and mitigates the biased sampling problem. The coexistence of multiple approximators updated and tried in parallel permits obtaining a good estimation much faster than would be possible with a single approximator. Experiments in different benchmark problems show that the competitive strategy provides a faster and more stable learning than non-competitive approaches.
CitationAgostini, A.; Celaya, E. "Competitive function approximation for reinforcement learning". 2014. 
Is part ofIRI-TR-14-05
URIhttp://hdl.handle.net/2117/28454
Collections
  • VIS - Visió Artificial i Sistemes Intel·ligents - Reports de recerca [12]
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Reports de recerca [43]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1599-Competitiv ... Reinforcement-Learning.pdf4,347MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina