Autoadaptive neurorehabilitation robotic system assessment with a post-stroke patient
View/Open
RIAI nicolas.pdf (884,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/28330
Document typeArticle
Defense date2015-01-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
This paper presents a new rehabilitation system that is able to adapt its performance to patient's psychophysiological state during the execution of robotic rehabilitation tasks. Using this approach, the motivation and participation of the patient during rehabilitation activity can be maximized. In this paper, the results of the study with healthy subjects presented in (Badesa et al., 2014b) have been extended for using them with patients who have suffered a stroke. In the first part of the article, the different components of the adaptive system are exposed, as well as a comparison of different machine learning techniques to classify the patient's psychophysiological state between three possible states: stressed, average excitation level and relaxed are presented. Finally, the results of the auto-adaptive system which modifies the behavior of the rehabilitation robot and virtual task in function of measured physiological signals are shown for a patient in the chronic phase of stroke.
CitationMorales, R. [et al.]. Autoadaptive neurorehabilitation robotic system assessment with a post-stroke patient. "Revista iberoamericana de automática e informática industrial", 01 Gener 2015, vol. 12, núm. 1, p. 92-98.
ISSN1697-7912
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S1697791214000867#
Files | Description | Size | Format | View |
---|---|---|---|---|
RIAI nicolas.pdf![]() | 884,5Kb | Restricted access |