Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • AccederRegistro (usuarios no UPC)Acceder (usuarios no UPC)
  • mailContacto
  • world Castellano 
    • Català
    • Castellano
    • English
  • userInicia sesión   
      AccederRegistro (usuarios no UPC)Acceder (usuarios no UPC)

UPCommons. Portal de acceso abierto al conocimiento de la UPC

57.066 E-prints UPC
You are here:
Ver ítem 
  •   UPCommons
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • Ver ítem
  •   UPCommons
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks

Thumbnail
Ver/Abrir
Fuzzy Anomaly in CCN.pdf (820,5Kb)
Comparte:
 
 
10.1016/j.neucom.2014.08.070
 
  Ver Estadísticas de uso
Cita com:
hdl:2117/28322

Mostrar el registro completo del ítem
Karami, Amin
Guerrero Zapata, ManelMés informacióMés informacióMés informació
Tipo de documentoArtículo
Fecha de publicación2015-02-03
Condiciones de accesoAcceso abierto
Todos los derechos reservados. Esta obra está protegida por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la autorización del titular de los derechos
Proyecto4WARD - 4WARD (EC-FP7-216041)
Resumen
In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase – the training phase – we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase – the detection phase – we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms.
CitaciónKarami, A.; Guerrero, M. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks. "Neurocomputing", 03 Febrer 2015, vol. 149, Part C, p. 1253-1269. 
URIhttp://hdl.handle.net/2117/28322
DOI10.1016/j.neucom.2014.08.070
ISSN0925-2312
Versión del editorhttp://www.sciencedirect.com/science/article/pii/S0925231214011588
Colecciones
  • Departament d'Arquitectura de Computadors - Articles de revista [910]
  • CNDS - Xarxes de Computadors i Sistemes Distribuïts - Articles de revista [91]
Comparte:
 
  Ver Estadísticas de uso

Mostrar el registro completo del ítem

FicherosDescripciónTamañoFormatoVer
Fuzzy Anomaly in CCN.pdf820,5KbPDFVer/Abrir

Listar

Esta colecciónPor fechaAutoresOtras contribucionesTítulosMateriasEste repositorioComunidades & coleccionesPor fechaAutoresOtras contribucionesTítulosMaterias

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • Sobre esta web
  • Contacto
  • Sugerencias
  • Inici de la pàgina