DeTrans: Deterministic and parallel execution of transactions
View/Open
06970659.pdf (219,2Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference report
Defense date2014
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Deterministic execution of a multithreaded application guarantees the same output as long as the application runs with the same input parameters. Determinism helps a programmer to test and debug an application and to provide fault-tolerance in the systems based on replicas. Additionally, Transactional Memory (TM) greatly simplifies development of multithreaded applications where applications use transactions (instead of locks) as a concurrency control mechanism to synchronize accesses to shared memory. However, deterministic systems proposed so far are not TM-aware. They violate the main properties of TM (atomicity, consistency and isolation of transactions), and execute TM applications incorrectly. In this paper, we present DeTrans, a runtime system for deterministic execution of multithreaded TM applications. DeTrans executes TM applications deterministically, it executes nontransactional code serially in round-robin order, and transactional code in parallel. Also, we show how DeTrans works with both eager and lazy software TM. We compare DeTrans with Dthreads, a state-of-the-art deterministic execution system. Unlike Dthreads, DeTrans does not use memory protection hardware nor facilities of the underlying operating system (OS) to execute multithreaded applications deterministically. DeTrans uses properties of software TM to ensure deterministic execution. We evaluate DeTrans using the STAMP benchmark suite and we compare DeTrans and Dthreads performance costs. DeTrans incurs less overhead because threads execute in the same address space without any OS system calls overhead. According to our results, DeTrans is 3.99x, 3.39x, 2.44x faster on average than Dthreads for 2, 4 and 8 threads, respectively.
CitationSmiljkovic, V. [et al.]. DeTrans: Deterministic and parallel execution of transactions. A: International Symposium on Computer Architecture and High Performance Computing. "IEEE 26th International Symposium on Computer Architecture and High Performance Computing: 22–24 October 2014: Paris, France: proceedings". París: Institute of Electrical and Electronics Engineers (IEEE), 2014, p. 152-159.
ISBN978-1-4799-6904-3
Publisher versionhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6970659
Files | Description | Size | Format | View |
---|---|---|---|---|
06970659.pdf![]() | 219,2Kb | Restricted access |