Show simple item record

dc.contributor.authorPijaudier-Cabot, Gilles
dc.contributor.authorBode, L
dc.contributor.authorHuerta, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2015-05-25T08:38:50Z
dc.date.available2015-05-25T08:38:50Z
dc.date.created1995-10
dc.date.issued1995-10
dc.identifier.citationPijaudier, G.; Bode, L.; Huerta, A. Arbitrary lagrangian-eulerian finite element analysis of strain localization in transient problems. "International journal for numerical methods in engineering", Octubre 1995, vol. 38, núm. 24, p. 4171-4191.
dc.identifier.issn0029-5981
dc.identifier.urihttp://hdl.handle.net/2117/28021
dc.description.abstractNon-local models guaranty that finite element computations on strain softening materials remain sound up to failure from a theoretical and computational viewpoint. The non-locality prevents strain localization with zero global dissipation of energy, and consequently finite element calculations converge upon mesh refinements to non-zero width localization zones. One of the major drawbacks of these models is that the element size needed in order to capture the localization zone must be smaller than the intemallength. Hence, the total number of degrees of freedom becomes rapidly prohibitive for most engineering applications and there is an obvious need for mesh adaptivity. This paper deals with the application of the arbitrary Lagrangian-Eulerian (ALE) formulation, well known in hydrodynamics and fluid-structure interaction problems, to transient strain localization in a non-local damageable material. It is shown that the ALE formulation which is employed in large boundary motion problems can also be well suited for non-linear transient analysis of softening materials where localization bands appear. The remeshing strategy is based on the equidistribution of an indicator that quantifies the interelement jump of a selected state variable. Two well known one-dimensional examples illustrate the capabilities of this technique: the first one deals with localization due to a propagating wave in a bar, and the second one studies the wave propagation in a hollow sphere.
dc.format.extent21 p.
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica
dc.subject.lcshLagrange equations
dc.subject.othernon-linear computational mechanics
dc.subject.otherarbitrary Lagrangian-Eulerian
dc.subject.othermesh adaptivity
dc.subject.otherstrain-softening
dc.subject.otherlocalization
dc.subject.otherdamage mechanics
dc.subject.otherwave propagation
dc.titleArbitrary lagrangian-eulerian finite element analysis of strain localization in transient problems
dc.typeArticle
dc.subject.lemacFísica matemàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1002/nme.1620382406
dc.description.peerreviewedPeer Reviewed
dc.subject.ams70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access
local.identifier.drac671983
dc.description.versionPostprint (author’s final draft)
local.citation.authorPijaudier, G.; Bode, L.; Huerta, A.
local.citation.publicationNameInternational journal for numerical methods in engineering
local.citation.volume38
local.citation.number24
local.citation.startingPage4171
local.citation.endingPage4191


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder