Show simple item record

dc.contributor.authorAbdollahi Hosnijeh, Amir
dc.contributor.authorArias Vicente, Irene
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2015-05-21T12:12:44Z
dc.date.available2016-05-02T00:31:42Z
dc.date.created2015-04-01
dc.date.issued2015-04-01
dc.identifier.citationAbdollahi, A.; Arias, I. Phase-field modeling of fracture in ferroelectric materials. "Archives of computational methods in engineering", 01 Abril 2015, vol. 22, núm. 2, p. 153-181.
dc.identifier.issn1134-3060
dc.identifier.urihttp://hdl.handle.net/2117/28003
dc.description.abstractThis paper presents a family of phase-field models for the coupled simulation of the microstructure formation and evolution, and the nucleation and propagation of cracks in single and polycrystalline ferroelectric materials. The first objective is to introduce a phase-field model for ferroelectric single crystals. The model naturally couples two existing energetic phase-field approaches for brittle fracture and ferroelectric domain formation and evolution. Simulations show the interactions between the microstructure and the crack under mechanical and electromechanical loadings. Another objective of this paper is to encode different crack face boundary conditions into the phase-field framework since these conditions strongly affect the fracture behavior of ferroelectrics. The smeared imposition of these conditions are discussed and the results are compared with that of sharp crack models to validate the proposed approaches. Simulations show the effects of different conditions and electromechanical loadings on the crack propagation. In a third step, the model is modified by introducing a crack non-interpenetration condition in the variational approach to fracture accounting for the asymmetric behavior in tension and compression. The modified model makes it possible to explain anisotropic crack growth in ferroelectrics under the Vickers indentation loading. This model is also employed for the fracture analysis of multilayer ferroelectric actuators, which shows the potential of the model for future applications. The coupled phase-field model is also extended to polycrystals by introducing realistic polycrystalline microstructures in the model. Inter- and trans-granular crack propagation modes are observed in the simulations. Finally, and for completeness, the phase-field theory is extended to the simulation of the propagation of conducting cracks under purely electrical loading and to the three-dimensional simulation of crack propagation in ferroelectric single crystals. Salient features of the crack propagation phenomenon predicted by the simulations of this paper are directly compared with experimental observations.
dc.format.extent29 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.otherFerroelectricity
dc.subject.otherPiezoelectricity
dc.subject.otherFracture
dc.subject.otherPhase-field models
dc.subject.otherPolycrystals
dc.subject.otherFinite element analysis
dc.subject.otherDomain switching
dc.titlePhase-field modeling of fracture in ferroelectric materials
dc.typeArticle
dc.subject.lemacElements finits, Mètode dels
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1007/s11831-014-9118-8
dc.description.peerreviewedPeer Reviewed
dc.subject.ams65K Mathematical programming, optimization and variational techniques
dc.relation.publisherversionhttp://link.springer.com/article/10.1007/s11831-014-9118-8
dc.rights.accessOpen Access
local.identifier.drac13032829
dc.description.versionPostprint (author’s final draft)
local.citation.authorAbdollahi, A.; Arias, I.
local.citation.publicationNameArchives of computational methods in engineering
local.citation.volume22
local.citation.number2
local.citation.startingPage153
local.citation.endingPage181


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder