dc.contributor.author | Soriano Alfonso, Franciso |
dc.contributor.author | Moreno Eguilaz, Juan Manuel |
dc.contributor.author | Álvarez Flórez, Jesús Andrés |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics |
dc.date.accessioned | 2015-05-11T15:41:24Z |
dc.date.created | 2014-12-18 |
dc.date.issued | 2014-12-18 |
dc.identifier.citation | Soriano, Francisco; Moreno-Eguilaz, J.M.; Alvarez, J. Drive cycle identification and energy demand estimation for refuse-collecting vehicles. "IEEE transactions on vehicular technology", 18 Desembre 2014, núm. 99. |
dc.identifier.issn | 0018-9545 |
dc.identifier.uri | http://hdl.handle.net/2117/27883 |
dc.description.abstract | Drive cycle identification and future energy-demand
prediction are advantageous when developing hybrid propulsion
systems. They are applicable to vehicles that are driven along the
same route everyday such as buses, refuse-collecting vehicles
(RCVs) or delivery vehicles.
Drive cycle identification can be used to identify what power
transients can be expected to prepare the power train to operate
under these conditions.
If the energy management algorithm of a hybrid vehicle can
account for future energy demand, then it can be arranged in
such a way that the non-fossil-fuel energy sources are fully
depleted at the end of the drive cycle.
Given that RCVs always drive in similar drive cycles, drive
cycle has been modeled and its main characteristics
parameterized. The model is separated into different drive cycles
which are related to different power-consumption modes.
In this paper, a new method to identify drive cycles and the
energy left to finish a route is proposed. The drive cycle
identification is based on artificial intelligence algorithms, which
have been trained and tested with real data with an average
efficiency in drive cycle identification of over 90%.
The energy necessary to finish the route is based on vehicle
energy models and statistical analysis. This method can be used
in the daily management of fleet vehicles to replace fossil fuel by
electric energy, as is demonstrated in the proposed examples. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria mecànica::Motors::Motors elèctrics |
dc.subject | Àrees temàtiques de la UPC::Energies::Gestió de l’energia |
dc.subject.lcsh | Hybrid electric vehicles |
dc.subject.lcsh | Electric power systems -- Management -- Mathematical models |
dc.title | Drive cycle identification and energy demand estimation for refuse-collecting vehicles |
dc.type | Article |
dc.subject.lemac | Vehicles elèctrics híbrids |
dc.subject.lemac | Sistemes de distribució d'energia elèctrica –- Gestió -- Models matemàtics |
dc.contributor.group | Universitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group |
dc.contributor.group | Universitat Politècnica de Catalunya. CREMIT - Centre de Recerca de Motors i Instal·lacions Tèrmiques |
dc.identifier.doi | 10.1109/TVT.2014.2382591 |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 15341281 |
dc.description.version | Postprint (published version) |
dc.date.lift | 10000-01-01 |
local.citation.author | Soriano, Francisco; Moreno-Eguilaz, J.M.; Alvarez, J. |
local.citation.publicationName | IEEE transactions on vehicular technology |
local.citation.number | 99 |