Show simple item record

dc.contributor.authorBloom, Gary
dc.contributor.authorLampis, Michael
dc.contributor.authorMuntaner Batle, Francesc Antoni
dc.contributor.authorRius Font, Miquel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.date.accessioned2009-03-16T16:58:36Z
dc.date.available2009-03-16T16:58:36Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/2117/2784
dc.description.abstractWe introduce and investigate the concept of Queen labeling a digraph and its connection to the well-known n-queens problem. In the general case we obtain an upper bound on the size of a queen graph and show that it is tight. We also examine the existence of possible forbid-den subgraphs for this problem and show that only two such subgraphs exist. Then we focus on specific graph families: First we show that every star is a queen graph by giving an algorithm for which we prove cor-rectness. Then we show that the problem of queen labeling a matching is equivalent to a variation of the n-queens problem, which we call the rooks-and-queens problem and we use that fact to give a short proof that every matching is a queen graph. Finally, for unions of 3-cycles we give a general solution of the problem for graphs of n(n - 1) vertices.
dc.format.extent10 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshGraph labelings
dc.subject.otherLabeling
dc.titleQueen Labelings
dc.typeArticle
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.rights.accessOpen Access
dc.relation.projectidcttMTM2008-06620-C03-01/MTM
local.personalitzacitaciotrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder