Show simple item record

dc.contributor.authorVaronesi, E
dc.contributor.authorMurgia, A
dc.contributor.authorCaselli, A
dc.contributor.authorGrisendi, G
dc.contributor.authorPiccinno, M.S
dc.contributor.authorRasini, V
dc.contributor.authorGiordano, Roberto
dc.contributor.authorMontemurro, T
dc.contributor.authorBourin, P
dc.contributor.authorSensebe, L
dc.contributor.authorRojewski, M.T
dc.contributor.authorSchrezenmeier, H
dc.contributor.authorLayrolle, P
dc.contributor.authorGinebra Molins, Maria Pau
dc.contributor.authorPenaitescu, C.B
dc.contributor.authorGomez Barrena, E
dc.contributor.authorCatani, F
dc.contributor.authorPaolucci, P
dc.contributor.authorBurns, J.S
dc.contributor.authorDominici, M
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.identifier.citationVaronesi, E. [et al.]. Transportation conditions for prompt use of Ex Vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration. "Tissue engineering. Part C, methods", Març 2014, vol. 20, núm. 3, p. 239-251.
dc.description.abstractSuccessful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4 C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/ß-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/ß-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/ß-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/ß-TCP 3D scaffold and subsequent in vivo bone formation. A successfully validated transportation protocol extends the applicability of fresh stem cells involving multicentric trials for regenerative medicine
dc.format.extent13 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshTissue engineering
dc.subject.lcshBiomedical materials.
dc.subject.otherEngineering controlled terms: Adhesion
dc.subject.otherBiological materials
dc.subject.otherStem cells
dc.subject.otherThree dimensional
dc.subject.otherTransmission control protocol
dc.titleTransportation conditions for prompt use of Ex Vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration
dc.subject.lemacEnginyeria de teixits
dc.subject.lemacMaterials biomèdics
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/241879/EU/Regenerating Bone defects using New biomedical Engineering approaches/REBORNE
upcommons.citation.authorVaronesi, E.; Murgia, A.; Caselli, A.; Grisendi, G.; Piccinno, M.; Rasini, V.; Giordano, R.; Montemurro, T.; Bourin, P.; Sensebe, L.; Rojewski, M.; Schrezenmeier, H.; Layrolle, P.; Ginebra, M.P.; Penaitescu, C.; Gomez, E.; Catani, F.; Paolucci, P.; Burns, J.; Dominici, M.
upcommons.citation.publicationNameTissue engineering. Part C, methods

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain