Analysis of the breathing pattern in elderly patients using the Hurst exponent applied to the respiratory flow signal
View/Open
Y2014_BGiraldo_IEEE_EMBS_Analysis_breathing_pattern_elderly_pat_Hurst_exponent_applied_resp_flow_signal.pdf (733,6Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/27681
Document typeConference report
Defense date2014
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Due to the increasing elderly population and the extensive number of comorbidities that affect them, studies are required to determine future increments in admission to emergency departments. Some of these studies could focus on the relation between chronic diseases and breathing pattern in elderly patients. Variations in the fractal properties of respiratory signals can be associated with several diseases. To determine the relationship between these variations and breathing patterns, and to quantify the fractal properties of respiratory flow signals, we estimated the Hurst exponent
(H). Detrended fluctuation analysis (DFA) and discrete wavelet
transform-based estimation (DWTE) methods were applied. The estimation methods were analyzed using simulated data series generated by fractional Gaussian noise. 43 elderly patients (19 patients with a non-periodic breathing pattern - nPB, and 24
patients with a periodic breathing pattern - PB) were studied.
The results were evaluated according to the length of data
and the number of averaged data series used to obtain a good
estimation. The DWTE method estimated the respiratory flow
signals better than the DFA method, and obtained Hurst values
clustered by group. We found significant differences in the H exponent (p = 0.002) between PB and nPB patients, which showed different behavior in the fractal properties.
CitationTellez , J. [et al.]. Analysis of the breathing pattern in elderly patients using the Hurst exponent applied to the respiratory flow signal. A: IEEE Engineering in Medicine and Biology Society. "36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC)". Chicago: 2014, p. 3422-3425.
ISBN978-1-4244-7929-0
Collections
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.508]
- BIOSPIN - Biomedical Signal Processing and Interpretation - Ponències/Comunicacions de congressos [70]
- IBEC - Institute for Bioengineering of Catalonia - Ponències/Comunicacions de congressos [75]
Files | Description | Size | Format | View |
---|---|---|---|---|
Y2014_BGiraldo_ ... plied_resp_flow_signal.pdf | 733,6Kb | Restricted access |