Show simple item record

dc.contributor.authorRuiz Ruiz, Hector Efrain
dc.contributor.authorAlbareda Sambola, Maria
dc.contributor.authorFernández Aréizaga, Elena
dc.contributor.authorResende, Mauricio G. C.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.identifier.citationRuiz, H. [et al.]. A biased random-key genetic algorithm for the capacitated minimum spanning tree problem. "Computers & operations research", Maig 2015, vol. 57, p. 95-108.
dc.description.abstractThis paper focuses on the capacitated minimum spanning tree(CMST)problem.Given a central processor and a set of remote terminals with specified demands for traffic that must flow between the central processor and terminals,the goal is to design a minimum cost network to carry this demand. Potential links exist between any pair of terminals and between the central processor and the terminals. Each potential link can be included in the design at a given cost.The CMST problem is to design a minimum-cost network connecting the terminals with the central processor so that the flow on any arc of the network is at most Q. A biased random-keygenetic algorithm(BRKGA)is a metaheuristic for combinatorial optimization which evolves a population of random vectors that encode solutions to the combinatorial optimization problem.This paper explores several solution encodings as well as different strategies for some steps of the algorithm and finally proposes a BRKGA heuristic for the CMST problem. Computational experiments are presented showing the effectivenes sof the approach:Seven newbest- known solutions are presented for the set of benchmark instances used in the experiments.
dc.format.extent14 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa
dc.subject.lcshCombinatorial optimization
dc.subject.lcshComputer algorithms
dc.subject.otherCombinatorial optimization
dc.subject.otherSpanning trees
dc.subject.otherCapacitated minimumspanningtree
dc.subject.otherBiased random-keygeneticalgorithm
dc.titleA biased random-key genetic algorithm for the capacitated minimum spanning tree problem
dc.subject.lemacOptimització combinatòria
dc.subject.lemacAlgorismes genètics
dc.contributor.groupUniversitat Politècnica de Catalunya. GNOM - Grup d'Optimització Numèrica i Modelització
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
local.citation.authorRuiz, H.; Albareda-Sambola, M.; Fernandez, E.; Resende, M.
local.citation.publicationNameComputers & operations research

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder