Show simple item record

dc.contributor.authorRahimi Lenji, Mohammad
dc.contributor.authorZhang, Kuan
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2015-04-29T11:54:19Z
dc.date.available2015-04-29T11:54:19Z
dc.date.created2015-03-01
dc.date.issued2015-03-01
dc.identifier.citationRahimi, M.; Zhang, K.; Arroyo, M. Computing the volume enclosed by a periodic surface and its variation to model a follower pressure. "Computational Mechanics", 01 Març 2015, vol. 55, núm. 3, p. 519-525.
dc.identifier.issn0178-7675
dc.identifier.urihttp://hdl.handle.net/2117/27661
dc.description.abstractIn modeling and numerically implementing a follower pressure in a geometrically nonlinear setting, one needs to compute the volume enclosed by a surface and its variation. For closed surfaces, the volume can be expressed as a surface integral invoking the divergence theorem. For periodic systems, widely used in computational physics and materials science, the enclosed volume calculation and its variation is more delicate and has not been examined before. Here, we develop simple expressions involving integrals on the surface, on its boundary lines, and point contributions. We consider two specific situations, a periodic tubular surface and a doubly periodic surface enclosing a volume with a nearby planar substrate, which are useful to model systems such as pressurized carbon nanotubes, supported lipid bilayers or graphene. We provide a set of numerical examples, which show that the familiar surface integral term alone leads to an incorrect volume evaluation and spurious forces at the periodic boundaries.
dc.format.extent7 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.otherPeriodic surface
dc.subject.otherVolume
dc.subject.otherPressure
dc.subject.otherFollower load
dc.subject.otherGRAPHENE
dc.subject.otherMEMBRANES
dc.subject.otherADHESION
dc.subject.otherTRENDS
dc.titleComputing the volume enclosed by a periodic surface and its variation to model a follower pressure
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1007/s00466-014-1119-9
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs00466-014-1119-9
dc.rights.accessOpen Access
local.identifier.drac15561726
dc.description.versionPostprint (author’s final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/240487/EU/Predictive models and simulations in nano- and biomolecular mechanics: a multiscale approach/PREDMODSIM
local.citation.authorRahimi, M.; Zhang, K.; Arroyo, M.
local.citation.publicationNameComputational Mechanics
local.citation.volume55
local.citation.number3
local.citation.startingPage519
local.citation.endingPage525


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder