Show simple item record

dc.contributor.authorRovira Garcia, Adrià
dc.contributor.authorJuan Zornoza, José Miguel
dc.contributor.authorSanz Subirana, Jaume
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física Aplicada
dc.date.accessioned2015-04-22T12:46:58Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationRovira-Garcia, Adrià.; Juan, J.; Sanz, J. A real-time world-wide ionospheric model for single and multi-frequency precise navigation. A: International Technical Meeting of the Satellite Division of the Institute of Navigation. "Proceedings of the 27th International Technical Meeting of the ION Satellite Division, ION GNSS+ 2014, Tampa, Florida, September 8-12, 2014". Tampa: The Institute of Navigation, 2014, p. 2533-2543.
dc.identifier.urihttp://hdl.handle.net/2117/27516
dc.descriptionBest Presentation Award, 27th. International Technical Meeting of Satellite Division of the Instutute of Navigation (ION GNSS+2014)
dc.description.abstractThe ionosphere plays an important role in satellite-based navigation, either in standard navigation, with single frequency mass-market receivers, or in precise navigation, with dual frequency receivers. In this work, the requirements of a real-time ionospheric model suitable for GNSS applications are explored, in terms of accuracy and confidence bounds. Key factors for an ionospheric determination better than 1 Total Electron Content Unit (TECU) (16 centimeters in L1) are shown to be whether the model has been derived using an ambiguity-fixing strategy and the number of layers used to reproduce the ionospheric delay. Different models are assessed both in mid-latitudes and equatorial regions, near the Solar Cycle maximum. It will be shown how dual-frequency users take benefit from a precise modelling of the ionosphere. If accurate enough, the convergence of the navigation filter is reduced to achieve high accuracy positioning quickly, (i.e., the Fast Precise Point Positioning technique). Satellite orbits and clocks computed for Fast-PPP will be shown to be accurate to few centimeters and few tenths of nanoseconds, respectively. Single-frequency users correct its measurements with the predictions provided by any ionospheric model. Thence, the accuracy of the Fast-PPP ionospheric corrections is directly translated to the measurements modelling and, consequently, to the user solution. Horizontal and vertical 95% accuracies are shown to be better than 36 and 63 centimeters for single-frequency users and 11 and 15 centimeters for dual-frequency users. The assessment is done for several locations, including the equatorial region, for a month of data close to the last Solar Maximum. The trade-off between the formal and actual positioning errors has been carefully studied by means of the Stanford plots to set realistic confidence bounds to the corrections.
dc.format.extent11 p.
dc.language.isoeng
dc.publisherThe Institute of Navigation
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.lcshGlobal Positioning System
dc.titleA real-time world-wide ionospheric model for single and multi-frequency precise navigation
dc.typeConference lecture
dc.subject.lemacGNSS (sistema de navegació)
dc.contributor.groupUniversitat Politècnica de Catalunya. gAGE - Grup d'Astronomia i Geomàtica
dc.description.awardwinningAward-winning
dc.relation.publisherversionhttp://www.ion.org/publications/abstract.cfm?jp=p&articleID=12446
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac15141569
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorRovira-Garcia, Adrià.; Juan, J.; Sanz, J.
local.citation.contributorInternational Technical Meeting of the Satellite Division of the Institute of Navigation
local.citation.pubplaceTampa
local.citation.publicationNameProceedings of the 27th International Technical Meeting of the ION Satellite Division, ION GNSS+ 2014, Tampa, Florida, September 8-12, 2014
local.citation.startingPage2533
local.citation.endingPage2543


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain