Optimizing the design parameters of threshold pool mixes for anonymity and delay
View/Open
Article principal (1,828Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/27477
Document typeArticle
Defense date2014-07-04
Rights accessRestricted access - publisher's policy
Abstract
The provision of content confidentiality via message encryption is by no means sufficient when facing the significant privacy risks present in online communications. Indeed, the privacy literature abounds with examples of traffic analysis techniques aimed to reveal a great deal of information, merely from the knowledge, even if probabilistic, of who is communicating with whom, when, and how frequently. Anonymous-communication systems emerge as a response against such traffic analysis threats. Mixes, and in particular threshold pool mixes, are a building block of anonymous communications systems. These are nodes that receive, store, reorder and delay messages in batches. However, the anonymity gained from the statistical difficulty to link incoming and outgoing messages comes at the expense of introducing a potentially costly delay in the delivery of those messages.
CitationRebollo-Monedero, D. [et al.]. Optimizing the design parameters of threshold pool mixes for anonymity and delay. "Computer networks", 04 Juliol 2014, vol. 67, p. 180-200.
ISSN1389-1286
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S1389128614001522
Files | Description | Size | Format | View |
---|---|---|---|---|
optimizing the ... f threshold pool mixes.pdf![]() | Article principal | 1,828Mb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain