Show simple item record

dc.contributor.authorStrahl, Stephan
dc.contributor.authorHusar, Attila Peter
dc.contributor.authorSerra, Maria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2015-04-16T15:22:10Z
dc.date.available2015-04-16T15:22:10Z
dc.date.created2011
dc.date.issued2011
dc.identifier.citationStrahl, S.; Husar, A.; Serra, M. Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell. "Journal of power sources", 2011, vol. 196, núm. 9, p. 4251-4263.
dc.identifier.issn0378-7753
dc.identifier.urihttp://hdl.handle.net/2117/27392
dc.description.abstractWater concentration in proton exchange membrane (PEM) fuel cells strongly influences performance and durability which demands for fundamental understanding of water transport mechanisms. The system efficiency can be significantly improved with greater understanding of water flux dynamics through the membrane and its dependence on the internal conditions of the fuel cell. Therefore, a two-dimensional, non-isothermal, dynamic model of a 100 W open cathode, self-humidified PEM fuel cell system has been developed, that is capable of representing system specific control mechanisms for water and thermal management. The model consists of three coupled submodels based on energy, momentum and water mass balance of the system. The work is based on experimental observations of the investigated fuel cell stack, for which the crucial coefficients for water transport, namely the diffusion and the electroosmotic drag (EOD) coefficient have been determined. The diffusivity of water vapor through the MEA at 30 °C was determined to be 3.3 × 10-8 m2 s-1 and increases by 3 × 10-10 m2 s-1 °C-1 up to 50 °C stack temperature. The EOD coefficient was measured as 0.47–0.48 water molecules per proton at stack currents from 1 to 3 A. Validation of the steady state and the dynamic model by using experimental data, directly obtained from laboratory tests, has shown that the model predictions match the experimental data well.
dc.format.extent13 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.otherautomation
dc.subject.otherproton exchange membrane fuel cells
dc.subject.otherwater transport
dc.subject.otherelectroosmotic drag
dc.subject.otherwater diffusion
dc.subject.otherthermal management
dc.titleDevelopment and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. ACES - Control Avançat de Sistemes d'Energia
dc.identifier.doi10.1016/j.jpowsour.2010.10.074
dc.description.peerreviewedPeer Reviewed
dc.subject.inspecClassificació INSPEC::Automation
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.jpowsour.2010.10.074
dc.rights.accessOpen Access
local.identifier.drac5390688
dc.description.versionPostprint (author’s final draft)
local.citation.authorStrahl, S.; Husar, A.; Serra, M.
local.citation.publicationNameJournal of power sources
local.citation.volume196
local.citation.number9
local.citation.startingPage4251
local.citation.endingPage4263


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record