Smart multi-model approach based on adaptive neuro-fuzzy inference systems and genetic algorithms
View/Open
07048513.pdf (430,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/27186
Document typeConference report
Defense date2014
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
A model of power demand represents the foundation of any intelligent Energy Management System, and its accuracy is the key factor determining the performance of such system. In order to improve the accuracy of the modeling process, a multi-model approach based on a Hierarchical Clustering of similar load behaviors is presented. The clustering algorithm joins similar data subsets in groups that are modelled separately using Adaptive Neuro-Fuzzy Inference Systems. Thus, each of the obtained models addresses only the characterization of one behavior, which provides better accuracy than classical approaches based on a single model, in addition to being easier and faster to train. During the training process of the models, an input selection technique based on Genetic Algorithms is proposed to search and select the best combination of inputs. The use of search algorithms allows to reduce the complexity of this task while maintaining the system performance, which represents a significant time saving of expert staff. The proposed approach is validated by means of experimental data from an automotive manufacturing plant. In addition to improving the forecasting accuracy, this methodology automates the segmentation of the load profiles into models and the selection of their inputs, as well as improving parallelization to effectively reduce the computation time.
CitationSala, E. [et al.]. Smart multi-model approach based on adaptive neuro-fuzzy inference systems and genetic algorithms. A: IEEE International Conference on Industrial Electronics. "Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society". Dallas, TX: 2014, p. 288-294.
ISBN978-1-4799-4033-2
Files | Description | Size | Format | View |
---|---|---|---|---|
07048513.pdf![]() | 430,0Kb | Restricted access |