Mostra el registre d'ítem simple

dc.contributor.authorLange, Diego
dc.contributor.authorRocadenbosch Burillo, Francisco
dc.contributor.authorTiana Alsina, Jordi
dc.contributor.authorFrasier, Steve
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2015-04-07T09:46:02Z
dc.date.available2015-04-07T09:46:02Z
dc.date.created2015-06-01
dc.date.issued2015-06-01
dc.identifier.citationLange, D. [et al.]. Atmospheric boundary layer height estimation using a Kalman filter and a frequency-modulated continuous-wave radar. "IEEE transactions on geoscience and remote sensing", 01 Juny 2015, vol. 53, núm. 6, p. 3338-3349.
dc.identifier.issn0196-2892
dc.identifier.urihttp://hdl.handle.net/2117/27128
dc.description.abstractAn adaptive solution based on an Extended Kalman Filter (EKF) is proposed to estimate the Atmospheric Boundary-Layer Height (ABLH) from Frequency-Modulated Continuous-Wave (FMCW) S-band weather-radar returns. The EKF estimator departs from previous works, in which the transition interface between the Mixing-Layer (ML) and the Free-Troposphere (FT) is modeled by means of an erf-like parametric function. In contrast to lidar remote sensing where aerosols give strong backscatter returns over the whole ML, clear-air radar reflectivity returns (Bragg scattering from refractive turbulence) shows strongest returns from the ML-FT interface. In addition, they are corrupted by “insect” noise (impulsive noise associated with Rayleigh scatter ing from insects and birds), all of which requires a specific treatment of the problem and the measurement noise for the clear-air radar case. The proposed radar-ABLH estimation method uses: (i) a first pre-processing of the reflectivity returns based on median filtering and threshold-limited decision to obtain “clean” reflectivity signal, (ii) a modified EKF with adaptive range intervals as time tracking estimator, and (iii) ad-hoc modelling of the observation noise covariance. The method has successfully been implemented in clear-air, single-layer, convective boundary layer conditions. ABLH estimates from the proposed radar-EKF method have been cross-examined with those from a collocated lidar ceilometer yielding a correlation coefficient as high as rho = 0.93 (mean signal-to-noise ratio, SNR = 18 (linear units), at the ABLH) and in relation to the classic threshold method.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció
dc.subject.lcshRemote sensing
dc.subject.lcshAerosols -- Remote sensing
dc.subject.otherAdaptive kalman filtering
dc.subject.otherlaser radar
dc.subject.otherremote sensing
dc.subject.othersignal processing.
dc.titleAtmospheric boundary layer height estimation using a Kalman filter and a frequency-modulated continuous-wave radar
dc.typeArticle
dc.subject.lemacTeledetecció
dc.subject.lemacAerosols -- Teledetecció
dc.contributor.groupUniversitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
dc.identifier.doi10.1109/TGRS.2014.2374233
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6998066&tag=1
dc.rights.accessOpen Access
local.identifier.drac15555496
dc.description.versionPostprint (author’s final draft)
local.citation.authorLange, D.; Rocadenbosch, F.; Tiana, J.; Frasier, S.
local.citation.publicationNameIEEE transactions on geoscience and remote sensing
local.citation.volume53
local.citation.number6
local.citation.startingPage3338
local.citation.endingPage3349


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple