Biogas biological desulphurisation under extremely acidic conditions for energetic valorisation in Solid Oxide Fuel Cells
View/Open
Arespacochaga, N. Biogas biological desulphurisation under extremely acidic condicions for energetic valorisation in solid oxide fuel cells.pdf (886,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/26925
Document typeArticle
Defense date2014-11-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The most harmful biogas contaminant for energy conversion equipment such as fuel cells is hydrogen sulphide (H2S); thus efficient and cost-effective treatment systems for this compound should be designed and developed. A pilot-scale biotrickling filter (BTF) working in acidic media (pH = 1.5-2) was operated for raw sewage biogas desulphurisation. Its operational performance as a function of two key important process parameters (temperature and retention time) was evaluated through short-term experimentation; showing that H2S removal efficiencies greater than 90% can be obtained at temperatures of 30 C, retention times of 80-85 s and H2S Loading Rates of 210 gH(2)S/(m(bed)(3) h). The system was afterwards operated for 924 h and showed an average elimination capacity of 169 gH(2)S/(m(bed)(3) h) at an average removal efficiency of 84%. The unit proved to be reversible to the effect of operation disruptions (lack of temperature control, limitations on oxygen supply), which were introduced to simulate possible system miss functioning or operational failures. Nevertheless, partial oxidation to elemental sulphur (S-(s)) accounted for 70% of H2S removal progressively increasing the pressure drop over the column; reducing the availability of the treatment line and eventually leading to fuel cell shutdowns. More efficient systems for oxygen supply and solids removal are the key factors to be addressed for a sustainable deployment of BTF technology in waste water treatment plants (WWTP). (C) 2014 Elsevier B.V. All rights reserved.
Citationde Arespacochaga, N. [et al.]. Biogas biological desulphurisation under extremely acidic conditions for energetic valorisation in Solid Oxide Fuel Cells. "Chemical engineering journal", 01 Novembre 2014, vol. 255, p. 677-685.
ISSN1385-8947
Files | Description | Size | Format | View |
---|---|---|---|---|
Arespacochaga, ... solid oxide fuel cells.pdf | 886,1Kb | Restricted access |