A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects
View/Open
Article (931,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/26887
Document typeArticle
Defense date2012-08-01
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Simulation of walking in individuals with incomplete spinal cord injuries (SCI) wearing an active orthosis is a challenging problem from both the analytical and the computational points of view, due to the redundant nature of the simultaneous actuation of the two systems. The objective of this work is to quantify the contributions of muscles and active orthosis to the net joint torques, so as to assist the design of active orthoses for SCI. The functional innervated muscles of SCI patients were modeled as Hill-type actuators, while the idle muscles were represented by elastic and dissipative elements. The orthosis was included as a set of external torques added to the ankles, knees, and hips to obtain net joint torque patterns similar to those of normal unassisted walking. The muscle-orthosis redundant actuator problem was solved through a physiological static optimization approach, for which several cost functions and various sets of innervated muscles were compared.
CitationAlonso, J. [et al.]. A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects. "Multibody system dynamics", 01 Agost 2012, vol. 28, núm. 1-2, p. 109-124.
ISSN1384-5640
Files | Description | Size | Format | View |
---|---|---|---|---|
published-paper-def.pdf | Article | 931,9Kb | Restricted access |