Show simple item record

dc.contributor.authorBrankovic, Aleksandar
dc.contributor.authorStavrou, Kyriakos
dc.contributor.authorGibert Codina, Enric
dc.contributor.authorGonzález Colás, Antonio María
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2015-03-12T12:42:17Z
dc.date.available2015-03-12T12:42:17Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationBrankovic, A. [et al.]. Accurate off-line phase classification for HW/SW co-designed processors. A: ACM International Conference on Computing Frontiers. "CF '14: Proceedings of the 11th ACM Conference on Computing Frontiers". Cagliari: Association for Computing Machinery (ACM), 2014.
dc.identifier.isbn978-1-4503-2870-8
dc.identifier.urihttp://hdl.handle.net/2117/26678
dc.description.abstractEvaluation techniques in microprocessor design are mostly based on simulating selected application's samples using a cycle-accurate simulator. These samples usually correspond to different phases of the application stream. To identify these phases, relevant high-level application statistics are collected and clustered using a process named "Off-Line Phase Classification". The purpose of phase classification is to reduce the number of samples that need to be simulated with the minimum loss in accuracy (compared to simulating the complete set of samples). Unfortunately, when directly applied to HW/SWco-designed processors1 the traditional phase classifications do not provide a good trade-off between accuracy and the number of samples. As an example, according to our experimental results, to achieve a 4% error (compared to simulating all the samples) one needs to simulate 2.5X more samples for the case of HW/SW co-designed processors compared to what is necessary for HW-only processors. In this paper, we propose a novel off-line phase classification scheme called TOL Description Vector (TDV), which is suitable for HW/SW co-designed processors. TDV targets at estimating the TOL particularities and on average gives significantly better accuracy than traditional phase classification for any number of selected samples. For instance, TDV reaches the average error of 3% with 3X less samples than traditional classifiation. These benefits apply for different TOL and microarchitecture configurations.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherAssociation for Computing Machinery (ACM)
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subject.lcshMicroprocessors -- Design and construction
dc.subject.otherDynamic binary translation
dc.subject.otherHW/SW co-designed processors
dc.subject.othersimulation
dc.subject.otherWarm-up methodology
dc.titleAccurate off-line phase classification for HW/SW co-designed processors
dc.typeConference report
dc.subject.lemacMicroprocessadors -- Disseny i construcció
dc.contributor.groupUniversitat Politècnica de Catalunya. ARCO - Microarquitectura i Compiladors
dc.identifier.doi10.1145/2597917.2597937
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://dl.acm.org/citation.cfm?id=2597917.2597937&coll=DL&dl=ACM&CFID=487439683&CFTOKEN=84982485
dc.rights.accessOpen Access
local.identifier.drac15509141
dc.description.versionPostprint (author’s final draft)
local.citation.authorBrankovic, A.; Stavrou, K.; Gibert, E.; Gonzalez, A.
local.citation.contributorACM International Conference on Computing Frontiers
local.citation.pubplaceCagliari
local.citation.publicationNameCF '14: Proceedings of the 11th ACM Conference on Computing Frontiers
local.citation.startingPageArticle No. 5


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record