Detailed study of DFIG-based wind turbines to overcome the most severe grid faults
View/Open
1-s2.0-S0142061514003020-main.pdf (1,385Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/25218
Document typeArticle
Defense date2014-11-01
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper studies the effects of voltage sags caused by faults on doubly-fed induction generators to overcome grid faults. A wide range of sag duration and depth values is considered. It is observed that sag duration influence is periodical. Sag effects depend on duration and depth and on the fault-clearing process as well. Two approaches of the model are compared: the most accurate approach, discrete sag, considers that the fault is cleared in the successive natural fault-current zeros of affected phases, leading to a voltage recovery in several steps; the least accurate approach, abrupt sag, considers that the fault is cleared instantaneously in all affected phases, leading to a one-step voltage recovery. Comparison between both sag models reveals that the fault-clearing process smoothes sag effects. The study assumes that the rotor-side converter can keep constant the transformed rotor current in the synchronous reference frame, thus providing insights into wind turbine fault ride-through capability. The voltage limit of the rotor-side converter is considered to show the situations where the rotor current can be controlled. Finally, a table and a 3D figure summarizing the effects of the most severe grid faults on the rotor-side converter to overcome the most severe faults are provided. (C) 2014 Elsevier Ltd. All rights reserved.
CitationRolan, A.; Pedra, J.; Corcoles, F. Detailed study of DFIG-based wind turbines to overcome the most severe grid faults. "International journal of electrical power and energy systems", 01 Novembre 2014, vol. 62, p. 868-878.
ISSN0142-0615
Files | Description | Size | Format | View |
---|---|---|---|---|
1-s2.0-S0142061514003020-main.pdf![]() | 1,385Mb | Restricted access |