Show simple item record

dc.contributor.authorPiles Guillem, Maria
dc.contributor.authorSanchez, Nilda
dc.contributor.authorVall-Llossera Ferran, Mercedes Magdalena
dc.contributor.authorCamps Carmona, Adriano José
dc.contributor.authorMartinez Fernandez, Jose
dc.contributor.authorMartinez, Justino
dc.contributor.authorGonzález Gambau, Veronica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.identifier.citationPiles, M. [et al.]. A downscaling approach for SMOS land observations: evaluation of high-resolution soil moisture maps over the Iberian Peninsula. "IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing", 01 Setembre 2014, vol. 7, núm. 9, p. 3845-3857.
dc.description.abstractThe ESA's Soil Moisture and Ocean Salinity (SMOS) mission is the first satellite devoted to measure the Earth's surface soil moisture. It has a spatial resolution of similar to 40 km and a 3-day revisit. In this paper, a downscaling algorithm is presented as a new ability to obtain multiresolution soil moisture estimates from SMOS using visible-to-infrared remotely sensed observations. This algorithm is applied to combine 2 years of SMOS and MODIS Terra/Aqua data over the Iberian Peninsula into fine-scale (1 km) soil moisture estimates. Disaggregated soil moisture maps are compared to 0-5 cm ground-based measurements from the REMEDHUS network. Three matching strategies are employed: 1) a comparison at 40 km spatial resolution is undertaken to ensure SMOSsensitivity is preserved in the downscaled maps; 2) the spatio-temporal correlation of downscaled maps is analyzed through comparison with point-scale observations; and 3) high-resolution maps and ground-based observations are aggregated per land-use to identify spatial patterns related with vegetation activity and soil type. Results show that the downscaling method improves the spatial representation of SMOS coarse soil moisture estimates while maintaining temporal correlation and root mean squared differences with ground-based measurements. The dynamic range of in situ soil moisture measurements is reproduced in the high-resolution maps, including stations with different mean soil wetness conditions. Downscaled maps capture the soil moisture dynamics of general land uses, with the exception of irrigated crops. This evaluation study supports the use of this downscaling approach to enhance the spatial resolution of SMOS observations over semi-arid regions such as the Iberian Peninsula.
dc.format.extent13 p.
dc.subjectÀrees temàtiques de la UPC::Enginyeria agroalimentària::Ciències de la terra i de la vida
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Satèl·lits i ràdioenllaços
dc.subject.lcshSoil moisture--Measurement
dc.subject.lcshSpectroscopic imaging
dc.subject.otherModerate resolution Imaging Spectroradiometer (MODIS)
dc.subject.otherSoil Moisture and Ocean Salinity (SMOS)
dc.subject.othersoil moisture
dc.titleA downscaling approach for SMOS land observations: evaluation of high-resolution soil moisture maps over the Iberian Peninsula
dc.subject.lemacSòls -- Humitat -- Mesurament
dc.contributor.groupUniversitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
local.citation.authorPiles, M.; Sanchez, N.; Vall-llossera, M.; Camps, A.; Martinez, J.; Martinez, J.; González, V.
local.citation.publicationNameIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder