Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.866 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean basin

Thumbnail
View/Open
Wang et al, ACP2014 (3,734Mb)
 
10.5194/acp-14-12031-2014
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/25064

Show full item record
Wang, Y
Sartelet, K. N.
Bocquet, M.
Sicard, MichaëlMés informacióMés informació
Comerón Tejero, AdolfoMés informacióMés informacióMés informació
García Vizcaíno, DavidMés informacióMés informacióMés informació
Muñoz Porcar, ConstantinoMés informacióMés informacióMés informació
Rocadenbosch Burillo, FranciscoMés informacióMés informacióMés informació
Document typeArticle
Defense date2014-11-17
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectACTRIS - Aerosols, Clouds, and Trace gases Research Infrastructure Network (EC-FP7-262254)
Abstract
This paper presents a new application of assimilating lidar signals to aerosol forecasting. It aims at investigating the impact of a ground-based lidar network on the analysis and short-term forecasts of aerosols through a case study in the Mediterranean basin. To do so, we employ a data assimilation (DA) algorithm based on the optimal interpolation method developed in the POLAIR3D chemistry transport model (CTM) of the POLYPHEMUS air quality modelling platform. We assimilate hourly averaged normalised range-corrected lidar signals (PR2) retrieved from a 72 h period of intensive and continuous measurements performed in July 2012 by ground-based lidar systems of the European Aerosol Research Lidar Network (EARLINET) integrated into the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) network and an additional system in Corsica deployed in the framework of the pre-ChArMEx (Chemistry-Aerosol Mediterranean Experiment)/ TRAQA (TRAnsport à longue distance et Qualité de l’Air) campaign. This lidar campaign was dedicated to demonstrating the potential operationality of a research network like EARLINET and the potential usefulness of assimilation of lidar signals to aerosol forecasts. Particles with an aerodynamic diameter lower than 2.5 µm (PM2.5) and those with an aerodynamic diameter higher than 2.5 µm but lower than 10 µm (PM10-2.5) are analysed separately using the lidar observations at each DA step. First, we study the spatial and temporal influences of the assimilation of lidar signals on aerosol forecasting. We conduct sensitivity studies on algorithmic parameters, e.g. the horizontal correlation length (Lh) used in the background error covariance matrix (50 km, 100 km or 200 km), the altitudes at which DA is performed (0.75–3.5 km, 1.0–3.5 km or 1.5–3.5 km a.g.l.) and the assimilation period length (12 h or 24 h). We find that DA with Lh = 100 km and assimilation from 1.0 to 3.5 km a.g.l. during a 12 h assimilation period length leads to the best scores for PM10 and PM2.5 during the forecast period with reference to available measurements from surface networks. Secondly, the aerosol simulation results without and with lidar DA using the optimal parameters (Lh = 100 km, an assimilation altitude range from 1.0 to 3.5 km a.g.l. and a 12 h DA period) are evaluated using the level 2.0 (cloud-screened and quality-assured) aerosol optical depth (AOD) data from AERONET, and mass concentration measurements (PM10 or PM2.5) from the French air quality (BDQA) network and the EMEP-Spain/Portugal network. The results show that the simulation with DA leads to better scores than the one without DA for PM2.5, PM10 and AOD. Additionally, the comparison of model results to evaluation data indicates that the temporal impact of assimilating lidar signals is longer than 36 h after the assimilation period.
CitationWang, Y. [et al.]. Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean basin. "Atmospheric chemistry and physics", 17 Novembre 2014, vol. 14, p. 12031-12053. 
URIhttp://hdl.handle.net/2117/25064
DOI10.5194/acp-14-12031-2014
ISSN1680-7316
Publisher versionhttp://www.atmos-chem-phys.net/14/12031/2014/acp-14-12031-2014.html
Collections
  • Departament de Teoria del Senyal i Comunicacions - Articles de revista [2.641]
  • RSLAB - Remote Sensing Research Group - Articles de revista [620]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
045_wang_acp2014.pdfWang et al, ACP20143,734MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina