Mostra el registre d'ítem simple

dc.contributor.authorGarcia March, Miguel Angel
dc.contributor.authorJulia Diaz, Bruno
dc.contributor.authorAstrakharchik, Grigori
dc.contributor.authorBusch, Th
dc.contributor.authorBoronat Medico, Jordi
dc.contributor.authorPolls, A.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear
dc.date.accessioned2014-12-16T13:44:41Z
dc.date.available2014-12-16T13:44:41Z
dc.date.created2014-10-07
dc.date.issued2014-10-07
dc.identifier.citationGarcia, M. [et al.]. Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures. "New journal of physics", 07 Octubre 2014, vol. 16, p. 1-18.
dc.identifier.issn1367-2630
dc.identifier.urihttp://hdl.handle.net/2117/25053
dc.description.abstractWe present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one-and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshBose-Einstein condensation
dc.subject.lcshInteracting boson models
dc.subject.lcshInteracting boson-fermion models
dc.subject.otherbosonic mixtures
dc.subject.otherTonks-Girardeau gas
dc.subject.otherfew-atom systems
dc.subject.othermacroscopic superpositions
dc.subject.otherBose-Einstein condensate
dc.subject.otherharmonic trap
dc.subject.otherimpenetrable bosons
dc.subject.otherinteracting bosons
dc.subject.otheratoms
dc.subject.otherconfinement
dc.subject.otherseparation
dc.subject.otherstability
dc.subject.otherfermions
dc.titleQuantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures
dc.typeArticle
dc.subject.lemacCondensació de Bose-Einstein
dc.subject.lemacBosons
dc.contributor.groupUniversitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity
dc.identifier.doi10.1088/1367-2630/16/10/103004
dc.relation.publisherversionhttp://iopscience.iop.org/1367-2630/16/10/103004/
dc.rights.accessOpen Access
local.identifier.drac15341987
dc.description.versionPostprint (published version)
local.citation.authorGarcia, M.; Julia, B.; Astrakharchik, G.; Busch, T.; Boronat, J.; Polls, A.
local.citation.publicationNameNew journal of physics
local.citation.volume16
local.citation.startingPage1
local.citation.endingPage18


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple