Thermal analysis of polymer layered silicate nanocomposites. Identification of nanostructure development by DSC
View/Open
Shiravand, F. Thermal analysis of polymer layered silicate nanocomposites. Identification of nanostructure development by DSC.pdf (1007,Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/25026
Document typeArticle
Defense date2014-11-01
Rights accessRestricted access - publisher's policy
Abstract
It has been shown, for three different polymer layered silicate (PLS) nanocomposite systems, how differential scanning calorimetry (DSC) can identify the different reactions of homopolymerisation and of crosslinking that occur in the intra- and extra-gallery regions of these nanocomposites, respectively, and hence how DSC can be used to assess the cure conditions for optimising their nanostructure. The PLS nanocomposites are based upon: (i) diglycidyl ether of bisphenol-A (DGEBA) cured with a polyoxypropylene diamine; (ii) DGEBA cured with an -NH2 terminated hyperbranched polymer (HBP); and (iii) tri-glycidyl p-amino phenol (TGAP) cured with a diamine. In each case, the existence of both intra- and extra-gallery reactions in the DSC cure curves, and whether they occur simultaneously or sequentially, and in what order, are identified and correlated with the nanostructure as observed by small angle X-ray scattering and transmission electron microscopy. In particular, it is shown that the intra-gallery reaction must precede the extra-gallery for significant exfoliation to occur. In accordance with this scenario, the TGAP/diamine system displays the greatest degree of exfoliation, the DGEBA/diamine system the least, with the DGEBA/HBP system intermediate. For those systems in which significant exfoliation occurs, the DSC cure curves also allow the optimum cure conditions, such as the isothermal cure temperature, to be determined.
CitationShiravand, F. [et al.]. Thermal analysis of polymer layered silicate nanocomposites. Identification of nanostructure development by DSC. "Journal of thermal analysis and calorimetry", 01 Novembre 2014, vol. 118, núm. 2, p. 723-729.
ISSN1388-6150
Files | Description | Size | Format | View |
---|---|---|---|---|
Shiravand, F. T ... ure development by DSC.pdf![]() | 1007,Kb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder