Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.689 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CoDAlab - Control, Modelització, Identificació i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CoDAlab - Control, Modelització, Identificació i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic damage classification based on wave cluster and principal component analysis

Thumbnail
View/Open
2013_IWSHM_Fahit.pdf (1,062Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/24938

Show full item record
Garibnezhad, Fahit
Mujica Delgado, Luis EduardoMés informacióMés informacióMés informació
Rodellar Benedé, JoséMés informacióMés informacióMés informació
Fritzen, Claus-Peter
Document typeConference lecture
Defense date2013
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Principal Component Analysis (PCA) plays a significant role in SHM field. There are plenty of algorithms that use PCA either directly or indirectly to detect damages in structures. Although PCA shows a successful role in damage detection but it still needs a complimentary step for automatic damage classification. It means a human effort still is required to classify different clusters that exists. Among different clas- sifiers, the wavelet classifier posses many dedicated merits. This work concentrates on automatic classification of damages with different severities. To do this, PCA is used as a tool for dimensionality reduction and then a wavelet classifier is applied on the result to classify different patterns in the structure each of which associated to significant state of the structure. This work involves experiments with composite plates powered by piezoelectric transducers as sensors and actuators. Damages are introduced into the structure as mass with different weights.
CitationGaribnezhad, F. [et al.]. Automatic damage classification based on wave cluster and principal component analysis. A: International Workshop on Structural Health Monitoring. "Structural Health Monitoring 2013: A Roadmap to Intelligent Structures". Stanford: 2013, p. 2760-2767. 
URIhttp://hdl.handle.net/2117/24938
ISBN978-1-60595-115-7,
Collections
  • CoDAlab - Control, Modelització, Identificació i Aplicacions - Ponències/Comunicacions de congressos [183]
  • Departament de Matemàtiques - Ponències/Comunicacions de congressos [1.031]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2013_IWSHM_Fahit.pdf1,062MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina