Insight Centre for Data Analytics (DCU) at TRECVid 2014: instance search and semantic indexing tasks
Cita com:
hdl:2117/24915
Document typeConference report
Defense date2014
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Insight-DCU participated in the instance search (INS) and semantic indexing (SIN) tasks in 2014.
Two very different approaches were submitted for instance search, one based on features extracted using
pre-trained deep convolutional neural networks (CNNs), and another based on local SIFT features, large
vocabulary visual bag-of-words aggregation, inverted index-based lookup, and geometric verification
on the top-N retrieved results. Two interactive runs and two automatic runs were submitted, the best
interactive runs achieved a mAP of 0.135 and the best automatic 0.12. Our semantic indexing runs were
based also on using convolutional neural network features, and on Support Vector Machine classifiers
with linear and RBF kernels. One run was submitted to the main task, two to the no annotation task,
and one to the progress task. Data for the no-annotation task was gathered from Google Images and
ImageNet. The main task run has achieved a mAP of 0.086, the best no-annotation runs had a close
performance to the main run by achieving a mAP of 0.080, while the progress run had 0.043.
CitationMcGuinness, K. [et al.]. Insight Centre for Data Analytics (DCU) at TRECVid 2014: instance search and semantic indexing tasks. A: TRECVID Workshop. "2014 TREC Video Retrieval Evaluation Notebook Papers and Slides". Orlando, Florida: 2014.
Files | Description | Size | Format | View |
---|---|---|---|---|
cMcGuinness.pdf | Technical Report | 2,448Mb | View/Open | |
TRECVID_2014.pdf | Poster | 4,558Mb | View/Open |