Cure kinetics modeling and thermomechanical properties of cycloaliphatic epoxy-anhydride thermosets modified with hyperstar polymers
View/Open
Cure.pdf (458,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2014-09-15
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Hyperstar polymers (HSPs) with hyperbranched aromatic polyester core and arms consisting of block copolymers of poly(methyl methacrylate) and poly(hydroxyethyl methacrylate) have been used as polymeric modifiers in cycloaliphatic epoxy-anhydride formulations catalyzed with tertiary amines, with the purpose of enhancing the impact strength of the resulting materials without compromising other thermal and mechanical properties.> In this work, the effect of these polymeric modifiers on the curing kinetics, processing, thermal-mechanical properties and thermal stability has been studied using thermal analysis techniques such as DSC, TMA, DMA, and TGA. The morphology of the cured materials has been analyzed with SEM. The curing kinetics has been analyzed by isoconversional procedures and phenomenological kinetic models taking into account the vitrification during curing, and the degradation kinetics has been analyzed by means of isoconversional procedures, summarizing the results in a time-temperature-transformation (TTT) diagram. The results show that HSPs participate in the crosslinking process due to the presence of reactive groups, without compromising significantly their thermal-mechanical properties. The modified materials show a potential toughness enhancement produced by the formation of a nano-grained morphology. The TTT diagram is shown to be a useful tool for the optimization of the curing schedule in terms of curing completion and safe processing window, as well as for defining storage stability conditions. (C) 2014 Wiley Periodicals, Inc.
CitationBelmonte, A. [et al.]. Cure kinetics modeling and thermomechanical properties of cycloaliphatic epoxy-anhydride thermosets modified with hyperstar polymers. "Journal of polymer science. Part B, polymer physics", 15 Setembre 2014, vol. 52, núm. 18, p. 1227-1242.
ISSN0887-6266
Files | Description | Size | Format | View |
---|---|---|---|---|
Cure.pdf![]() | 458,5Kb | Restricted access |