Subspace procrustes analysis
View/Open
Cita com:
hdl:2117/24672
Document typeConference report
Defense date2014
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more effcient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach.
CitationPerez, X. [et al.]. Subspace procrustes analysis. A: European Conference on Computer Vision. "ECCV Workshop on ChaLearn Looking at People". Zurich: 2014.
Publisher versionhttp://www.ca.cs.cmu.edu/papers/subspace_pa.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
subspace_pa.pdf | Article principal | 1,619Mb | View/Open |