Show simple item record

dc.contributor.authorJoan Arinyo, Robert
dc.contributor.authorTarres Puertas, Marta Isabel
dc.contributor.authorVila Marta, Sebastià
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Disseny i Programació de Sistemes Electrònics
dc.date.accessioned2014-11-10T10:06:18Z
dc.date.created2014-07-01
dc.date.issued2014-07-01
dc.identifier.citationJoan-Arinyo, R.; Tarres, M.; Vila, S. Decomposition of geometric constraint graphs based on computing fundamental circuits. Correctness and complexity. "Computer Aided Design", 01 Juliol 2014, vol. 52, p. 1-16.
dc.identifier.issn0010-4485
dc.identifier.urihttp://hdl.handle.net/2117/24627
dc.description.abstractIn geometric constraint solving, Decomposition Recombination solvers (DR-solvers) refer to a general solving approach where the problem is divided into a set of sub-problems, each sub-problem is recursively divided until reaching basic problems which are solved by a dedicated equational solver. Then the solution to the starting problem is computed by merging the solutions to the sub-problems.; Triangle- or tree-decomposition is one of the most widely used approaches in the decomposition step in DR-solvers. It may be seen as decomposing a graph into three subgraphs such that subgraphs pairwise share one graph vertex. Shared vertices are called hinges. Then a merging step places the geometry in each sub-problem with respect to the other two.; In this work we report on a new algorithm to decompose biconnected geometric constraint graphs by searching for hinges in fundamental circuits of a specific planar embedding of the constraint graph. We prove that the algorithm is correct. (C) 2014 Elsevier Ltd. All rights reserved.
dc.format.extent16 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria computacional
dc.subject.lcshComputational geometry
dc.subject.otherGeometric constraint solving
dc.subject.otherGraph decomposition
dc.subject.otherFundamental circuits
dc.subject.otherBridges
dc.subject.otherPlanar embeddings
dc.subject.otherCONSTRUCTIVE APPROACH
dc.subject.otherSYSTEMS
dc.subject.otherSOLVER
dc.subject.otherALGORITHM
dc.subject.otherDESIGN
dc.subject.otherPLANS
dc.titleDecomposition of geometric constraint graphs based on computing fundamental circuits. Correctness and complexity
dc.typeArticle
dc.subject.lemacGeometria computacional
dc.contributor.groupUniversitat Politècnica de Catalunya. GIE - Grup d'Informàtica a l'Enginyeria
dc.identifier.doi10.1016/j.cad.2014.02.006
dc.identifier.dlElse
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S001044851400030X
dc.rights.accessRestricted access - publisher's policy
drac.iddocument15015345
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
upcommons.citation.authorJoan-Arinyo, R.; Tarres, M.; Vila, S.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameComputer Aided Design
upcommons.citation.volume52
upcommons.citation.startingPage1
upcommons.citation.endingPage16


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder